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Abstract. Non-FIFO processing of flows by network nodes is a frequent
phenomenon. Unfortunately, the state-of-the-art analytical tool for the
computation of performance bounds in packet-switched networks, net-
work calculus, cannot deal well with non-FIFO systems. The problem
lies in its conventional service curve definitions. Either the definition is
too strict to allow for a concatenation and consequent beneficial end-
to-end analysis, or it is too loose and results in infinite delay bounds.
Hence, in this paper, we propose a new approach to derive tight bounds
in tandems of non-FIFO nodes, the so-called self-adversarial approach.
The self-adversarial approach is based on a previously proposed method
for calculating performance bounds in feedforward networks [30]. By nu-
merical examples we demonstrate the superiority of the self-adversarial
approach over existing methods for the analysis of non-FIFO tandems
as well as that for low to medium utilizations it even stays close to cor-
responding FIFO performance bounds.

1 Introduction

1.1 Motivation

In the recent past, network calculus [10,25] has shown promise as an alternative
methodology, besides classical queueing theory, for the performance analysis of
packet-switched networks. It has found usage as a basic tool for attacking sev-
eral important network engineering problems: most prominently in the Internet’s
Quality of Service proposals IntServ and DiffServ, but also in other environments
like wireless sensor networks [22,29], switched Ethernets [31], Systems-on-Chip
(SoC) [8], or even to speed-up simulations [21], to name a few. Unfortunately, it
comes up short in certain fundamental aspects to really catch on as the system
theory for the Internet as which it is sometimes advertised (see for the subtitle
and the discussion in the introduction of the book by Le Boudec and Thiran
[25]). Two prominent fundamental limitations that can be raised are: (1) its de-
terministic nature, and (2) its dependence on strict FIFO processing of flows.
While still being open to some degree, the first issue has been dealt with ex-
tensively in literature, and particularly recent approaches towards a stochastic
relaxation of network calculus can, for example, be found in [20,11,16]. Yet, the
second issue about non-FIFO processing is still largely unexplored. In the next
subsection, we provide an overview of the previous scarce work we could find on



this topic. In contrast, non-FIFO multiplezing between flows was an intensive
subject in previous work (see, for example, [30,7] and the references therein to
recent contributions on the so-called arbitrary or general multiplexing). In this
paper, we are concerned with the scheduling within a flow under analysis, so we
deal with the questions when work units are processed by a node and in which
order. The first question on how a node provides its capacity to a flow is flexibly
answered by the network calculus concept of service curves, while the second
question has so far always been answered by assuming a FIFO processing order.
The goal of this paper is to provide a more flexible answer to this questions. In
the following, we provide some arguments on why besides being of theoretical
interest this issue should be addressed.

Assuming that the work units of a flow under analysis are processed in FIFO
order constitutes a logical break for the worst-case methodology in a certain
sense, as we discuss now. Assume that a flow traverses a system resulting in
a certain output process. The real delay' for a work unit input at time ¢ and
output at time ¢’ is simply defined as

rd(t) =t —t.

Any processing order other than FIFO results in an increase of the worst-case
real delay; this can be easily seen by the following argument: Assume at time
to a work unit which experiences the worst-case real delay is input to a FIFO
system. Now assume we can change the processing order of work units. If the
work unit is further delayed by scheduling work units that arrived later, then
certainly the real delay of that work unit under the new processing order will
be worse. Processing that work unit earlier will make its new real delay rd'(tg)
smaller, yet, the work unit which was processed just ahead of the above work
unit is now leaving the system when the above work unit would have left, yet
that work unit has arrived at time t; < t¢ such that the new real delay of that
work unit rd'(t1) is higher than or equal to the one from the FIFO worst-case
work unit, i.e., rd(ty) < rd'(t1). So, in this sense FIFO can be viewed as the best-
case assumption on the processing order of the flow under analysis. Therefore,
it can be seen as consistent with a worst-case methodology to release the FIFO
processing assumption.

Furthermore, by providing the following real-world examples where non-
FIFO behavior is exhibited, we also want to stress the practical relevance of
this work:

Packet Reordering: In several studies of Internet traffic it has been shown
that packet reordering is a frequent event (see, for example, [4,19]). According
to these studies this is occurs because of the growing amount of parallelism on a
global (use of multiple paths or parallel links) as well as on a local (device) level.
In particular, for scalability reasons high-speed routers often contain a complex
multi-stage switching fabric which cannot ensure to preserve the preservation
of arrivals at its output. This is due to a common design trade-off where FIFO

Y The word real is chosen for the purpose of contrasting it to the virtual delay, later
on defined as delay under FIFO processing of a flow.



service at the input queues is relaxed in order to avoid head-of-line blocking by
choosing from a set of packets in the input queue (often some window-based
scheme is used). Furthermore, the use of link aggregation, where multiple physi-
cal lines are aggregated into a single virtual link, may often lead to a non-FIFO
behavior [6].

Content-Dependent Packet Scheduling: As the last example, let us men-
tion wireless sensor networks (WSN) where packet scheduling decisions may be
based on the contents of packets following a WSN-typical data-centric paradigm.
Under such circumstances hardly anything can be assumed about the scheduling
order, let alone the FIFO behavior.

So, from a methodological as well as an application perspective there is a clear
need for an investigation on how network calculus can be extended towards an
analysis without any FIFO assumptions. Immediate questions that come up are:

— Can the existing network calculus concepts be carried over to the non-FIFO
case?

— Is an efficient end-to-end analysis still possible?

— What is the cost in terms of performance bounds compared to pure FIFO
systems?

1.2 Related Work

There is amazingly little existing work on the treatment of non-FIFO systems in
the context of network calculus. Remarkably, in his pioneering paper [12], Cruz
briefly showed how to derive a delay bound for a single work-conserving server
under a general scheduling assumption (comprising any non-FIFO processing
order) based on the observation that the maximum backlogged period can be
bounded given that traffic is regulated. Similar results can also be found in [10].
Yet, the multiple node case as well as more general server models are not treated
therein.

In [24], Le Boudec and Charny investigate a non-FIFO version of the Packet
Scale Rate Guarantee (PSRG) node model as used in DiffServ’s Expedited For-
warding definition. They show that the delay bound from the FIFO case still
applies in the single node case while it does not in a specific two node case. They
leave more general concatenation scenarios for further study.

In [30], we dealt with the problem of computing tight delay bounds for a
network of arbitrary (non-FIFO) aggregate multiplezers. They show the tightness
of their bounding method by sample path arguments. Yet, in contrast to the
problem setting in this paper, we still make a FIFO assumption on the processing
order within a flow and only allow for non-FIFO behavior between flows (see the
discussion in the previous subsection). Bouillard et al. recently provided more
advanced and general results for the same setting in [7], yet nevertheless, they
were still based on FIFO processing per flow.

To the best of our knowledge, the only previous work that also tries to de-
rive end-to-end delay bounds without any FIFO assumptions was done by Rizzo
and Le Boudec [27]. They investigate delay bounds for a special server model,



non-FIFO guaranteed rate (GR) nodes, and show that a previously derived de-
lay bound for GR nodes [17] is not valid for a non-FIFO case (against common
belief). Furthermore, they derive a new delay bound based on the network calcu-
lus results. Their delay bound no longer exhibits the nice pay-bursts-only-once
phenomenon. Based on sample path arguments, they argue that their bound
is tight and thus conclude that “pay bursts only once does not hold for non-
FIFO guaranteed rate nodes”. In contrast, we show that non-FIFO systems may
still possess a concatenation property. This seeming contradiction is discussed
in more detail at the very end of this paper.

1.3 Contributions
In this work, the following contributions are made:

— We demonstrate difficulties with existing service curve definitions under non-
FIFO processing.

— We introduce a new approach, called self-adversarial, that enables a true
end-to-end analysis for non-FIFO systems.

— We show that, somewhat contrary to the results presented in literature, the
pay-bursts-only-once phenomenon still holds for non-FIFO systems.

2 Preliminaries on Network Calculus

Network calculus is a min-plus system theory for deterministic queueing systems
that builds upon the calculus for network delay in [12], [13]. The important con-
cept of service curve was introduced in [2,9,14,23,28]. The service curve based
approach facilitates the efficient analysis of tandem queues where a linear scaling
of performance bounds in the number of traversed queues is achieved as elabo-
rated in [11] and also referred to as pay-bursts-only-once phenomenon in [25]. A
detailed treatment of min-plus algebra and of network calculus can be found in
[3] and [10], [25], respectively.

As network calculus is built around the notion of cumulative functions for
input and output flows of data, the set F of real-valued, non-negative, and wide-
sense increasing functions passing through the origin plays a major role:

F={f:Rt =Rt Vt>s: f(t) > f(s), f(0) =0} .

In particular, the input function F'(¢) and the output function F”(t), which
cumulatively count for the number of work units that are input to, respectively
output from, a system S, are in F. Throughout the paper, we assume in- and
output functions to be continuous in both time and space. Note that this is not a
general limitation as there exist transformations between discrete and continuous
models [25].

There are two important min-plus algebraic operators:



Definition 1. (Min-plus Convolution and Deconvolution) The min-plus convo-
lution and deconvolution of two functions f,g € F are defined to be

(feg) )= f {f(t-s)+g(s)},

0<s<t
(fog) )= il;lg{f(t +u) —g(u)}.

It can be shown that the triple (F, A, ®), where A denotes the minimum operator
(which ought to be taken pointwise for functions), constitutes a dioid [25]. Also,
the min-plus convolution is a linear operator on the dioid (RU {400}, A, +),
whereas the min-plus deconvolution is not. These algebraic characteristics result
in a number of rules that apply to those operators, many of which can be found
in [25], [10]. Let us now turn to the performance characteristics of flows that can
be bounded by network calculus means:

Definition 2. (Backlog and Virtual Delay) Assume a flow with input function
F that traverses a system S resulting in the output function F'. The backlog of
the flow at time t is defined as

b(t) = F(t) — F'(t).
The virtual delay for a work unit input at time t is defined as
vd(t) =inf {7 >0: F(t) < F'(t+7)}.

So, this is the point where the FIFO assumption sneaks in the network calculus
as far as delay is concerned, because rd(t) = wvd(t) for all ¢ only under FIFO
processing of the flow. We use the usual network calculus terminology of the
so-called wvirtual delay in contrast to the real delay, as defined above (see Sec-
tion 1.1). Next, arrival and departure processes specified by input and output
functions are bounded based on the central network calculus concepts of arrival
and service curves:

Definition 3. (Arrival Curve) Given a flow with input function F, a function
a € F is an arrival curve for F iff

Vi, s> 0,s<t:F(t)—F(t—s)<a(s) & F=F®a.

A typical example of an arrival curve is given by an affine arrival curve v, (t) =
b+rt,t > 0 and v (t) = 0, ¢ < 0, which corresponds to token-bucket traffic
regulation.

Definition 4. (Service Curve — SC') If the service provided by a system S for
a given input function F results in an output function F' we say that S offers a
service curve B iff

F'>F®p.

For continuous functions F and (3 this is equivalent to the following condition

Vi >0:3s<t:F'(t) > F(s)+ B(t — s).



A typical example of a service curve is given by a so-called rate-latency function
Brr (t) = R(t —=T) - 1yy>7y, where 1c,qy is 1 if the condition cond is satis-
fied and 0 otherwise. Also, nodes operating under a delay-based scheduler and
guaranteeing that a work unit arriving at any time t will leave the node at time
t' <t+T for some fixed T' > 0, i.e. Vt > 0: rd(t) < T, are known to provide a
service curve o7 = o0 - 1y~ 7y. We also call these bounded latency nodes.

Using those concepts it is possible to derive tight performance bounds on
backlog, virtual delay and output:

Theorem 1. (Performance Bounds) Consider a system S that offers a service
curve 5. Assume a flow I traversing the system has an arrival curve «. Then
we obtain the following performance bounds:

backlog: ¥t : b(t) < (a @ ) (0) =: v(av, B),
virtual delay: Vt : vd(t) < supinf{r >0:a(t) < B+ 1)} = h(a, ),
>0

output (arrival curve o'for F'): o/ = a @ B.

Here, note again that the delay bound is only a wirtual one, meaning that it is
based on the FIFO assumption for the flow under analysis. One of the strongest
results of the network calculus is the concatenation theorem that enables us to
investigate tandems of systems as if they were single systems:

Theorem 2. (Concatenation Theorem for Tandem Systems) Consider a flow
that traverses a tandem of systems S; and Sa. Assume that S; offers a service
curve [3; to the flow. Then the concatenation of the two systems offers a service
curve 31 ® PBo to the flow.

Using the concatenation theorem, it is ensured that an end-to-end analysis of
a tandem of servers achieves tight performance bounds, which in general is not
the case for an iterative per-node application of Theorem 1.

3 Conventional Network Calculus And Non-FIFO
Systems

In this section, we investigate how the existing network calculus can cope with
non-FIFO systems. The crucial aspect is the node model. We start with the
typical service curve model as defined in the previous section and then turn
to strict service curves, only to find out that both of them encounter problems
under non-FIFO processing.

3.1 Using Service Curves (SC) for Non-FIFO Systems

Ag the SC definition bears the advantages that many systems belong to that
class and that it possesses a concatenation property, it is worthwhile an attempt,
to apply it also in the case of non-FIFO systems. Yet, the following example
shows that it is impossible to bound the real delay in non-FIFO systems solely
based on the SC' definition:



Ezample 1. (SC Cannot Bound the Real Delay) Assume a single node system S
which offers a rate-latency service curve 3 = (3 ; to a flow £’ which is constrained
by an affine arrival curve o = 1 9. Now assume the flow to be greedy, that means
F = « and the server to be lazy, that means F' = F' ® (3. Thus, we obtain

Fl=a®B=v,08 021 ="71,0® 72,0
=(M,0ANY2,0) @0 <Y1,0Q0 <710=F.

Hence, Vt > 0 : F'(t) < F(t), or equivalently, V¢ > 0 : b(t) > 0, which means
that the system remains backlogged the entire time. Therefore, without any
assumptions on the processing order, a certain work unit can, under these cir-
cumstances, be kept forever in the system. Thus, the real delay of that work unit
is unbounded. Note that using the standard FIFO processing assumption, we can
of course bound the real delay of the system by V¢t > 0 : rd(t) = vd(t) < 3.

From this example, we see that the SC property is too weak as a node model for
analyzing non-FIFO systems. Therefore, it is sensible to look for more stringent
node models, as it is done in the following subsection.

3.2 Using Strict Service Curves (S2C) for Non-FIFO Systems

A number of systems provides more stringent service guarantees than captured
by SC, fulfilling the so-called strict service curve [25] (also known as strong
service curve [15,2] and related to the universal service curve concept in [26])

Definition 5. (Strict Service Curve — S2C) Let 3 € F. System S offers a strict
service curve 3 to a flow, if during any backlogged period of duration u the output
of the flow is at least equal to S(u). A backlogged period of duration u at time t
is defined by the fact that Vs € (t — u,t] : b(s) > 0.

Note that any node satisfying S2C' also satisfies SC, but not vice versa. For
example, a bounded latency node does not provide d7 as a strict service curve.
In fact, it does not provide any S?C apart from the trivial case 3 = 0. On
the other hand, there are many schedulers that offer strict service curves; for
example, most of the generalized processor sharing-emulating schedulers (e.g.,
PGPS [26], WF?Q [5], or round robin schedulers like SRR, [18], to name a few),
offer a strict service curve of the rate-latency type.

Now for bounding the real delay under S2C: In fact, as was already shown by
Cruz [12] (and can also be found in [10] (Lemma 1.3.2)), the intersection point
between an arrival and a strict service curve constitutes a bound on the length
of the maximum backlogged period and thus also a bound on the real delay for
such a system:

Theorem 3. (Real Delay Bound for Single S?C Node) Consider a system S
that offers a strict service curve 3. Assume a flow F' traversing the system has
an arrival curve . Then we obtain the following bound on the real delay:

rd(t) <sup{s > 0:a(s) > 0(s)} =:i(a, B).



So, the situation has improved in comparison to the SC case: Based on the single
node result one can conceive, for the multiple node case, an iterative application
of Theorem 3 together with the output bound from Theorem 1. More specifically,
if a tandem of n S2C non-FIFO nodes, each providing a strict service curve
Bj,j =1,...,n,is to be traversed by an a-constrained flow then a bound on the
real delay can be calculated as

n Jj—1
rd(t) <Y ila @ (R) Br, ;).
j=1 k=1
Setting for example 8; = Brr,j =1,...,n and a = 7,.; this results in

n(b+ RT)+ Z(n—1)rT
d(t) < 2 .
rd(t) < R—r

(1)

Here, we see a typical drawback of additive bounding methods, with the burst
of the traffic being paid n times as well as a quadratic scaling of the bound
in the number of nodes [11,25]. The key to avoid this behavior is to perform
an end-to-end analysis based on a concatenation theorem. Yet, as known and
demonstrated in the next example, S2C does not possess such a concatenation
property.

Ezample 2. (S?C Possesses No Concatenation Property) Assume two systems
81 and S, both providing a strict rate-latency service curve 3* = 11,1 = 1,2,
which are traversed in sequence by a flow F. Let F| and Fj be the output
functions from S; and Ss, respectively. As a candidate strict service curve for
the composite system, we consider % = 8! @ 5% = 3 5.

We now construct a backlogged period [t1,t2] of the composite system such
that

Fy(ta) = Fy(t1) < BY%(t2 — t1).

thereby showing that 3':2 is not a strict service curve for the composite system:

Let t; = 0 and to = 3 and assume the following behavior of the input and
output function

_JeO<t<2 iy J00<t<1
F@%_{%2§t§3’ Fﬂ)_{el<t§3’

ron_ J00<t<2
wa{62<t§3’

with any € > 0. It is easy to check that the composite system is continuously
backlogged during [0, 3] as well as that each individual system is not violating
its strict service curve property. Nevertheless, for any choice of ¢ < 1 we obtain

FJ(3) = F3(0) = ¢ < §2(3) = 1,

which shows that $%2 is not S2C for the composite system (while, of course,
being SC for it). In fact, by extending the example appropriately it can be



shown that the only strict service curve that can be guaranteed by the composite
system is the trivial case S = 0. This can be seen by making e arbitrarily small
and alternating between backlogged and idle periods of the individual systems
sufficiently often. Another way to view this, is that the backlogged period of a
composite system cannot be bounded based on the individual systems providing
a strict service curve.

4 The Self-Adversarial Approach

In this section, we devise an approach, called the self-adversarial method, to
compute a tight delay bound for non-FIFO systems based on a technique that
was introduced in [30].

4.1 The Self-Adversarial Method

As briefly discussed in Section 1.2, in [30], we proposed a technique for computing
tight delay bounds in the network of arbitrary (non-FIFO) aggregate multiplez-
ers, yet we still made a FIFO processing order assumption per flow. So, this
technique is not directly applicable when releasing all FIFO assumptions and
besides arbitrary multiplexing also assumes arbitrary scheduling within a flow.
Nevertheless, there is a way to exploit the proposed method for the problem at
hand by transforming the arbitrary scheduling problem into an arbitrary aggre-
gate multiplexing problem. More specifically, we split the original flow, with the
arrival curve a, into two sub-flows: one with the arrival curve a; = v, and the
other one with the arrival curve s = o — 9. Both flows traverse the same
servers as the original flow. This transformation is illustrated in Figure 1.

- J
e

Fig. 1. Transformation of the pure non-FIFO problem into an arbitrary aggregate
multiplexing problem.

Now the method from [30] allows us to find the maximum left-over end-to-end
service curve under arbitrary multiplexing, i.e., under any possible interleaving
of the two sub-flows. To that end, the problem is reformulated as an optimization
problem that can be solved by using standard methods. In [30,7], it is shown
that this approach achieves tight delay bounds. So, in our case we can proceed
with the following steps:



1. Computation of the left-over service curve for sub-flow 1 according to [30]:

l.o.
1

2. Computation of the delay bound for sub-flow 1: d; (¢) = h (al, 6{'0').
3. Letting the delay bound for sub-flow 1 go to the limit: d = lim._,q d; ().

What is effectively done here, is to assume that a part of the flow pretends to be
an adversary to the other part of the flow when it comes to competition for the
forwarding resources. This is why we call it the self-adversarial method. Taking
this behavior to the limit, i.e., making the adversary part as large as possible,
gives us a real delay bound as experienced by a single (infinitesimally small)
work unit.

We remark that the computation of the horizontal deviation in step 2 im-
plicitly makes a FIFO assumption for sub-flow 1. Yet, in the limit this is not
a problem because a single work unit provides no degrees of freedom for the
processing order any more.

Note that for the splitting of the original flow into two sub-flows we assumed
that € > 0 is chosen such that as > 0. In fact, for some arrival curves this may
not be possible. More precisely, if a(t) is continuous at ¢t = 0 (e.g., a constant
rate arrival curve), then the splitting described is not feasible. In such cases, the
original arrival curve should be shifted to the left by some small amount A and
set to zero for ¢ < 0. The approach is then performed on this new (strictly larger)
arrival curve. To find the delay bound under the original arrival curve, one lets
A — 0. We decided to neglect this (rarely occurring) technicality in the above
description of the self-adversarial method in order not to (further) complicate
it.

4.2 Self-Adversarial vs. Additive Bounding Method

Let us investigate by a simple example how the self-adversarial method works
and also compare it to an additive bounding based on S?C. Assume a token-
bucket arrival curve ;. for the flow under investigation (b > 0), which traverses
two servers providing strict rate-latency service curves Gg, 1,7 = 1,2. According
to the additive bounding based on S?C the delay bound then becomes:

b+7’T1 + b+7’(T1+T2)
R1 —-Tr R2 —-Tr '
For the self-adversarial method we first split the flow into two sub-flows:

subflow 1 with 79  and subflow 2 with ~, ;. as arrival curves. Proceeding with
the steps described in the previous section we obtain the following delay bound:

AP =Ti + T +

1. Computation of the left-over service for sub-flow 1 according to [30]:

i.o. = ﬂ . b—et+rTy Ty .
min{Ry,Ro}—r,T1+T2+

TR Ra] 7 T Roor

2. Computation of the delay bound for sub-flow 1:

b— T T:
dl(e): € e+ 1rily rilo

T, + T .
min {Ry, Ra} — r T min {Ry, Ra} — r * Ry —r




3. Letting the delay bound for sub-flow 1 go to the limit (¢ — 0):

b + TTl TTQ
A =T+ T :
1z min{Rl,Rg} —-r + Ry —r
A simple inspection shows that d°4 < d4P | where equality only holds if

b=0A(Ty =0V r =0), which are strong restrictions. Hence, this demonstrates
that the additive method is not tight under most circumstances. Similar problems
with purely min-plus algebraic methods are reported and extensively discussed
in [30]. These problems are inherent in using the min-plus algebraic approach.
In particular, by the application of a min-plus convolution the knowledge on the
order of servers is lost. Yet, this order is crucial to derive tight delay bounds
for non-FIFO systems. The min-plus algebraic approach automatically maps
a tandem of system to the worst-case order it could be in (see [30] for more
discussions along this line).

So, with respect to the tightness of the computed bounds, the self-adversarial
method is superior to the additive method. A potential drawback for the self-
adversarial method is that the computational effort for the self-adversarial method
can become very high. In particular, if arrival and service curves are piecewise-
linear functions then a set of optimization problem needs to be solved first before
the final left-over service curve can be constructed according to [30] (in [7] a more
efficient and provably tight approach is proposed, on which the self-adversarial
method could also be based). The cardinality of that set grows exponentially in
the number of nodes traversed and may quickly become prohibitive. For details
see [30], or even better [7], which also demonstrates the problem of computing a
tight delay bound under arbitrary multiplexing in general feedforward networks
to be NP-hard.

We also remark that the self-adversarial method requires S?C servers (as in
other cases like, e.g., fixed priority schedulers or arbitrary multiplexing scenar-
ios). This requirement is crucial for setting up the optimization problem in [30]
and a relaxation towards only assuming SC seems infeasible. This means, in par-
ticular, that bounded latency nodes cannot be analyzed. Similarly, according to
[30], the self-adversarial method can only be applied to piecewise-linear concave
arrival and convex service curves. Such a restriction does not apply, in principle,
to the additive bounding method.

While the tightness of the self-adversarial method is “inherited” from [30], it
can also be understood in the original system. In particular, if the processing
order applied is to always choose the work unit that has entered the network last
(assuming work units are time-stamped when they enter the network) then we
conjecture that the bound can actually be achieved. This processing order has
also been coined shortest-in-system (SIS) in the realm of adversarial queueing
theory [1]. If only one node is traversed, then SIS becomes LIFO and clearly con-
stitutes the worst-case processing order. In multi-node scenarios, we conjecture
that SIS produces a worst-case sample path if greedy arrivals (exactly follow-
ing the arrival curve) and lazy servers (exactly following the service curve) are
assumed.



As the last remark, we note that if there is also cross-traffic from other flows
we can first apply [30] to derive a left-over service curve for the flow of inter-
est and then apply the self-adversarial method to arrive at tight bounds under
arbitrary multiplexing and scheduling, i.e., a completely non-FIFO scenario.

5 Numerical Experiments

To give some feeling for the improvements achievable by using the self-adversarial
approach compared to an additive bounding based on S2C we provide some
numerical experiments. In addition, we demonstrate what cost is incurred when
releasing the FIFO assumption. For these numerical experiments we use simple
settings: as arrival curve for the flow to be analyzed we assume a token bucket
~rp Where we set r = 10[Mbps] and b = 5[Mb] (unless we vary the rate r to
achieve a certain utilization); for the service curves of the nodes to be traversed
we use a rate-latency function Srr with R = 20[Mbps] and T = 0.01[s]. Unless
we use the number of nodes as a primary factor in the experiments we assume
n = 10 nodes to be traversed by the flow under investigation.

5.1 Comparison of Self-Adversarial and Additive Bounding

In this first set of numerical experiments we investigate how the self-adversarial
(SA) and additive (AD) bounding methods compare to each other. In Figure
2(a) the two methods are shown for a varying number of nodes (from 2 to 20). To
emphasize the bad scaling of the additive method we also provide results for the
same experiment with a larger number of nodes to be traversed (up to 100) in
Figure 2(b). In both graphs it is obvious that the end-to-end analysis facilitated
by the self-adversarial approach is highly superior and scales linearly with the
number of nodes, whereas the additive bounding method scales quadratically
with the number of nodes traversed and thus becomes a very conservative bound
quickly.

A different view on the relative performance of self-adversarial and additive
methods is provided in Figure 2(c). Here, the acceptable utilizations (captured
by the ratio of the the rate for the flow under investigation and the service rate
of the tandem, i.e., ) for a given delay bound are shown for both methods.
This information can be used for admission control purposes. Again, as can be
clearly seen, the self-adversarial method outperforms the additive bounding by
far, especially for lower delay bounds. For example, if we desire a delay bound
of 2s, then an admission control using the additive bounding would return with
an infeasible reply, whereas under the self-adversarial approach we could admit
traffic up to ~ 80% of the service rate.

5.2 FIFO vs. Non-FIFO Delay Bounds

In the next set of numerical experiments, we investigate the cost of releasing
the FIFO assumption in terms of delay bounds. For that purpose, we vary the
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utilization by increasing the sustained rate of the traffic flow under investigation
(while at the same time scaling the bucket depth proportionally). As we can
observe from Figure 2(d), only for higher utilizations there is a significant differ-
ence between the FIFO and non-FIFO delay bounds if using the self-adversarial
bounding approach. On the other hand, if the additive bounding was used, the
cost of releasing FIFO assumptions is high, which may be why FIFO behavior
is often assumed a necessary condition to achieve good delay bounds [27]. Yet,
under strict service curve assumptions and using the self-adversarial approach
this assumption is not necessarily required any more.

From an application perspective, the bottom line is that only for highly
utilized systems it is necessary to enforce a FIFO behavior, as far as delay
bounds are concerned. For systems with lower utilizations, optimizations such
as for example link aggregation or multi-stage switching fabrics do not incur a
high cost in terms of worst-case delay bounds.



6 Conclusion and Discussion

In this paper, it was our goal to extend the scope of network calculus towards
non-FIFO systems, as non-FIFO behavior is a reality in many networking sce-
narios. It turned out that the existing service curve definitions are not satisfying
under non-FIFO scheduling: they are either too loose to enable any bounding
or too strict to allow for an efficient end-to-end analysis. Therefore, we devised
a new approach, called the self-adversarial bounding method, which is based on
previous work of ours and is provably tight. By numerical examples, we showed
that the self-adversarial approach is far superior to existing methods.

The self-adversarial approach allows to recover the pay-bursts-only-once phe-
nomenon for non-FIFO systems, which had been disputed to be valid under non-
FIFO scheduling in literature [27]. This seeming contradiction is due to different
assumptions on the service provided by nodes, guaranteed rate as in [27], or
strict service curve, as in this paper. Since the concatenation of guaranteed rate
nodes is based on their equivalence to rate-latency service curves (modulo pack-
etization effects), a convolution of them only provides an SC guarantee and thus
cannot bound the real delay, as discussed in Section 3. Hence, the only resort is
an additive bounding which, however, cannot recover the pay-bursts-only-once
phenomenon for the arbitrary scheduling case.
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