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t. Non-FIFO pro
essing of �ows by network nodes is a frequentphenomenon. Unfortunately, the state-of-the-art analyti
al tool for the
omputation of performan
e bounds in pa
ket-swit
hed networks, net-work 
al
ulus, 
annot deal well with non-FIFO systems. The problemlies in its 
onventional servi
e 
urve de�nitions. Either the de�nition istoo stri
t to allow for a 
on
atenation and 
onsequent bene�
ial end-to-end analysis, or it is too loose and results in in�nite delay bounds.Hen
e, in this paper, we propose a new approa
h to derive tight boundsin tandems of non-FIFO nodes, the so-
alled self-adversarial approa
h.The self-adversarial approa
h is based on a previously proposed methodfor 
al
ulating performan
e bounds in feedforward networks [30℄. By nu-meri
al examples we demonstrate the superiority of the self-adversarialapproa
h over existing methods for the analysis of non-FIFO tandemsas well as that for low to medium utilizations it even stays 
lose to 
or-responding FIFO performan
e bounds.1 Introdu
tion1.1 MotivationIn the re
ent past, network 
al
ulus [10,25℄ has shown promise as an alternativemethodology, besides 
lassi
al queueing theory, for the performan
e analysis ofpa
ket-swit
hed networks. It has found usage as a basi
 tool for atta
king sev-eral important network engineering problems: most prominently in the Internet'sQuality of Servi
e proposals IntServ and Di�Serv, but also in other environmentslike wireless sensor networks [22,29℄, swit
hed Ethernets [31℄, Systems-on-Chip(SoC) [8℄, or even to speed-up simulations [21℄, to name a few. Unfortunately, it
omes up short in 
ertain fundamental aspe
ts to really 
at
h on as the systemtheory for the Internet as whi
h it is sometimes advertised (see for the subtitleand the dis
ussion in the introdu
tion of the book by Le Boude
 and Thiran[25℄). Two prominent fundamental limitations that 
an be raised are: (1) its de-terministi
 nature, and (2) its dependen
e on stri
t FIFO pro
essing of �ows.While still being open to some degree, the �rst issue has been dealt with ex-tensively in literature, and parti
ularly re
ent approa
hes towards a sto
hasti
relaxation of network 
al
ulus 
an, for example, be found in [20,11,16℄. Yet, these
ond issue about non-FIFO pro
essing is still largely unexplored. In the nextsubse
tion, we provide an overview of the previous s
ar
e work we 
ould �nd on



this topi
. In 
ontrast, non-FIFO multiplexing between �ows was an intensivesubje
t in previous work (see, for example, [30,7℄ and the referen
es therein tore
ent 
ontributions on the so-
alled arbitrary or general multiplexing). In thispaper, we are 
on
erned with the s
heduling within a �ow under analysis, so wedeal with the questions when work units are pro
essed by a node and in whi
horder. The �rst question on how a node provides its 
apa
ity to a �ow is �exiblyanswered by the network 
al
ulus 
on
ept of servi
e 
urves, while the se
ondquestion has so far always been answered by assuming a FIFO pro
essing order.The goal of this paper is to provide a more �exible answer to this questions. Inthe following, we provide some arguments on why besides being of theoreti
alinterest this issue should be addressed.Assuming that the work units of a �ow under analysis are pro
essed in FIFOorder 
onstitutes a logi
al break for the worst-
ase methodology in a 
ertainsense, as we dis
uss now. Assume that a �ow traverses a system resulting ina 
ertain output pro
ess. The real delay1 for a work unit input at time t andoutput at time t′ is simply de�ned as
rd(t) = t′ − t.Any pro
essing order other than FIFO results in an in
rease of the worst-
asereal delay; this 
an be easily seen by the following argument: Assume at time

t0 a work unit whi
h experien
es the worst-
ase real delay is input to a FIFOsystem. Now assume we 
an 
hange the pro
essing order of work units. If thework unit is further delayed by s
heduling work units that arrived later, then
ertainly the real delay of that work unit under the new pro
essing order willbe worse. Pro
essing that work unit earlier will make its new real delay rd′(t0)smaller, yet, the work unit whi
h was pro
essed just ahead of the above workunit is now leaving the system when the above work unit would have left, yetthat work unit has arrived at time t1 ≤ t0 su
h that the new real delay of thatwork unit rd′(t1) is higher than or equal to the one from the FIFO worst-
asework unit, i.e., rd(t0) ≤ rd′(t1). So, in this sense FIFO 
an be viewed as the best-
ase assumption on the pro
essing order of the �ow under analysis. Therefore,it 
an be seen as 
onsistent with a worst-
ase methodology to release the FIFOpro
essing assumption.Furthermore, by providing the following real-world examples where non-FIFO behavior is exhibited, we also want to stress the pra
ti
al relevan
e ofthis work:Pa
ket Reordering: In several studies of Internet tra�
 it has been shownthat pa
ket reordering is a frequent event (see, for example, [4,19℄). A

ordingto these studies this is o

urs be
ause of the growing amount of parallelism on aglobal (use of multiple paths or parallel links) as well as on a lo
al (devi
e) level.In parti
ular, for s
alability reasons high-speed routers often 
ontain a 
omplexmulti-stage swit
hing fabri
 whi
h 
annot ensure to preserve the preservationof arrivals at its output. This is due to a 
ommon design trade-o� where FIFO1 The word real is 
hosen for the purpose of 
ontrasting it to the virtual delay, lateron de�ned as delay under FIFO pro
essing of a �ow.



servi
e at the input queues is relaxed in order to avoid head-of-line blo
king by
hoosing from a set of pa
kets in the input queue (often some window-baseds
heme is used). Furthermore, the use of link aggregation, where multiple physi-
al lines are aggregated into a single virtual link, may often lead to a non-FIFObehavior [6℄.Content-Dependent Pa
ket S
heduling:As the last example, let us men-tion wireless sensor networks (WSN) where pa
ket s
heduling de
isions may bebased on the 
ontents of pa
kets following a WSN-typi
al data-
entri
 paradigm.Under su
h 
ir
umstan
es hardly anything 
an be assumed about the s
hedulingorder, let alone the FIFO behavior.So, from a methodologi
al as well as an appli
ation perspe
tive there is a 
learneed for an investigation on how network 
al
ulus 
an be extended towards ananalysis without any FIFO assumptions. Immediate questions that 
ome up are:� Can the existing network 
al
ulus 
on
epts be 
arried over to the non-FIFO
ase?� Is an e�
ient end-to-end analysis still possible?� What is the 
ost in terms of performan
e bounds 
ompared to pure FIFOsystems?1.2 Related WorkThere is amazingly little existing work on the treatment of non-FIFO systems inthe 
ontext of network 
al
ulus. Remarkably, in his pioneering paper [12℄, Cruzbrie�y showed how to derive a delay bound for a single work-
onserving serverunder a general s
heduling assumption (
omprising any non-FIFO pro
essingorder) based on the observation that the maximum ba
klogged period 
an bebounded given that tra�
 is regulated. Similar results 
an also be found in [10℄.Yet, the multiple node 
ase as well as more general server models are not treatedtherein.In [24℄, Le Boude
 and Charny investigate a non-FIFO version of the Pa
ketS
ale Rate Guarantee (PSRG) node model as used in Di�Serv's Expedited For-warding de�nition. They show that the delay bound from the FIFO 
ase stillapplies in the single node 
ase while it does not in a spe
i�
 two node 
ase. Theyleave more general 
on
atenation s
enarios for further study.In [30℄, we dealt with the problem of 
omputing tight delay bounds for anetwork of arbitrary (non-FIFO) aggregate multiplexers. They show the tightnessof their bounding method by sample path arguments. Yet, in 
ontrast to theproblem setting in this paper, we still make a FIFO assumption on the pro
essingorder within a �ow and only allow for non-FIFO behavior between �ows (see thedis
ussion in the previous subse
tion). Bouillard et al. re
ently provided moreadvan
ed and general results for the same setting in [7℄, yet nevertheless, theywere still based on FIFO pro
essing per �ow.To the best of our knowledge, the only previous work that also tries to de-rive end-to-end delay bounds without any FIFO assumptions was done by Rizzoand Le Boude
 [27℄. They investigate delay bounds for a spe
ial server model,



non-FIFO guaranteed rate (GR) nodes, and show that a previously derived de-lay bound for GR nodes [17℄ is not valid for a non-FIFO 
ase (against 
ommonbelief). Furthermore, they derive a new delay bound based on the network 
al
u-lus results. Their delay bound no longer exhibits the ni
e pay-bursts-only-on
ephenomenon. Based on sample path arguments, they argue that their boundis tight and thus 
on
lude that �pay bursts only on
e does not hold for non-FIFO guaranteed rate nodes�. In 
ontrast, we show that non-FIFO systems maystill possess a 
on
atenation property. This seeming 
ontradi
tion is dis
ussedin more detail at the very end of this paper.1.3 ContributionsIn this work, the following 
ontributions are made:� We demonstrate di�
ulties with existing servi
e 
urve de�nitions under non-FIFO pro
essing.� We introdu
e a new approa
h, 
alled self-adversarial, that enables a trueend-to-end analysis for non-FIFO systems.� We show that, somewhat 
ontrary to the results presented in literature, thepay-bursts-only-on
e phenomenon still holds for non-FIFO systems.2 Preliminaries on Network Cal
ulusNetwork 
al
ulus is a min-plus system theory for deterministi
 queueing systemsthat builds upon the 
al
ulus for network delay in [12℄, [13℄. The important 
on-
ept of servi
e 
urve was introdu
ed in [2,9,14,23,28℄. The servi
e 
urve basedapproa
h fa
ilitates the e�
ient analysis of tandem queues where a linear s
alingof performan
e bounds in the number of traversed queues is a
hieved as elabo-rated in [11℄ and also referred to as pay-bursts-only-on
e phenomenon in [25℄. Adetailed treatment of min-plus algebra and of network 
al
ulus 
an be found in[3℄ and [10℄, [25℄, respe
tively.As network 
al
ulus is built around the notion of 
umulative fun
tions forinput and output �ows of data, the set F of real-valued, non-negative, and wide-sense in
reasing fun
tions passing through the origin plays a major role:
F =

{

f : R
+ → R

+, ∀t ≥ s : f(t) ≥ f(s), f(0) = 0
}

.In parti
ular, the input fun
tion F (t) and the output fun
tion F ′(t), whi
h
umulatively 
ount for the number of work units that are input to, respe
tivelyoutput from, a system S, are in F . Throughout the paper, we assume in- andoutput fun
tions to be 
ontinuous in both time and spa
e. Note that this is not ageneral limitation as there exist transformations between dis
rete and 
ontinuousmodels [25℄.There are two important min-plus algebrai
 operators:



De�nition 1. (Min-plus Convolution and De
onvolution) The min-plus 
onvo-lution and de
onvolution of two fun
tions f, g ∈ F are de�ned to be
(f ⊗ g) (t) = inf

0≤s≤t
{f(t − s) + g(s)} ,

(f ⊘ g) (t) = sup
u≥0

{f(t + u) − g(u)} .It 
an be shown that the triple (F ,∧,⊗), where ∧ denotes the minimum operator(whi
h ought to be taken pointwise for fun
tions), 
onstitutes a dioid [25℄. Also,the min-plus 
onvolution is a linear operator on the dioid (R ∪ {+∞},∧, +),whereas the min-plus de
onvolution is not. These algebrai
 
hara
teristi
s resultin a number of rules that apply to those operators, many of whi
h 
an be foundin [25℄, [10℄. Let us now turn to the performan
e 
hara
teristi
s of �ows that 
anbe bounded by network 
al
ulus means:De�nition 2. (Ba
klog and Virtual Delay) Assume a �ow with input fun
tion
F that traverses a system S resulting in the output fun
tion F ′. The ba
klog ofthe �ow at time t is de�ned as

b(t) = F (t) − F ′(t).The virtual delay for a work unit input at time t is de�ned as
vd(t) = inf {τ ≥ 0 : F (t) ≤ F ′(t + τ)} .So, this is the point where the FIFO assumption sneaks in the network 
al
ulusas far as delay is 
on
erned, be
ause rd(t) = vd(t) for all t only under FIFOpro
essing of the �ow. We use the usual network 
al
ulus terminology of theso-
alled virtual delay in 
ontrast to the real delay, as de�ned above (see Se
-tion 1.1). Next, arrival and departure pro
esses spe
i�ed by input and outputfun
tions are bounded based on the 
entral network 
al
ulus 
on
epts of arrivaland servi
e 
urves:De�nition 3. (Arrival Curve) Given a �ow with input fun
tion F , a fun
tion

α ∈ F is an arrival 
urve for F i�
∀t, s ≥ 0, s ≤ t : F (t) − F (t − s) ≤ α(s) ⇔ F = F ⊗ α.A typi
al example of an arrival 
urve is given by an a�ne arrival 
urve γr,b (t) =

b + rt, t > 0 and γr,b (t) = 0, t ≤ 0, whi
h 
orresponds to token-bu
ket tra�
regulation.De�nition 4. (Servi
e Curve � SC) If the servi
e provided by a system S fora given input fun
tion F results in an output fun
tion F ′ we say that S o�ers aservi
e 
urve β i�
F ′ ≥ F ⊗ β.For 
ontinuous fun
tions F and β this is equivalent to the following 
ondition

∀t ≥ 0 : ∃s ≤ t : F ′(t) ≥ F (s) + β(t − s).



A typi
al example of a servi
e 
urve is given by a so-
alled rate-laten
y fun
tion
βR,T (t) = R(t − T ) · 1{t>T}, where 1{cond} is 1 if the 
ondition cond is satis-�ed and 0 otherwise. Also, nodes operating under a delay-based s
heduler andguaranteeing that a work unit arriving at any time t will leave the node at time
t′ ≤ t + T for some �xed T > 0, i.e. ∀t ≥ 0 : rd(t) ≤ T , are known to provide aservi
e 
urve δT = ∞ · 1{t>T}. We also 
all these bounded laten
y nodes.Using those 
on
epts it is possible to derive tight performan
e bounds onba
klog, virtual delay and output:Theorem 1. (Performan
e Bounds) Consider a system S that o�ers a servi
e
urve β. Assume a �ow F traversing the system has an arrival 
urve α. Thenwe obtain the following performan
e bounds:ba
klog: ∀t : b(t) ≤ (α ⊘ β) (0) =: v(α, β),virtual delay: ∀t : vd(t) ≤ sup

t≥0

inf {τ ≥ 0 : α(t) ≤ β (t + τ)} =: h (α, β) ,output (arrival 
urve α′for F ′): α′ = α ⊘ β.Here, note again that the delay bound is only a virtual one, meaning that it isbased on the FIFO assumption for the �ow under analysis. One of the strongestresults of the network 
al
ulus is the 
on
atenation theorem that enables us toinvestigate tandems of systems as if they were single systems:Theorem 2. (Con
atenation Theorem for Tandem Systems) Consider a �owthat traverses a tandem of systems S1 and S2. Assume that Si o�ers a servi
e
urve βi to the �ow. Then the 
on
atenation of the two systems o�ers a servi
e
urve β1 ⊗ β2 to the �ow.Using the 
on
atenation theorem, it is ensured that an end-to-end analysis ofa tandem of servers a
hieves tight performan
e bounds, whi
h in general is notthe 
ase for an iterative per-node appli
ation of Theorem 1.3 Conventional Network Cal
ulus And Non-FIFOSystemsIn this se
tion, we investigate how the existing network 
al
ulus 
an 
ope withnon-FIFO systems. The 
ru
ial aspe
t is the node model. We start with thetypi
al servi
e 
urve model as de�ned in the previous se
tion and then turnto stri
t servi
e 
urves, only to �nd out that both of them en
ounter problemsunder non-FIFO pro
essing.3.1 Using Servi
e Curves (SC) for Non-FIFO SystemsAs the SC de�nition bears the advantages that many systems belong to that
lass and that it possesses a 
on
atenation property, it is worthwhile an attemptto apply it also in the 
ase of non-FIFO systems. Yet, the following exampleshows that it is impossible to bound the real delay in non-FIFO systems solelybased on the SC de�nition:



Example 1. (SC Cannot Bound the Real Delay) Assume a single node system Swhi
h o�ers a rate-laten
y servi
e 
urve β = β2,1 to a �ow F whi
h is 
onstrainedby an a�ne arrival 
urve α = γ1,0. Now assume the �ow to be greedy, that means
F = α and the server to be lazy, that means F ′ = F ⊗ β. Thus, we obtain

F ′ = α ⊗ β = γ1,0 ⊗ β2,1 = γ1,0 ⊗ γ2,0 ⊗ δ1

= (γ1,0 ∧ γ2,0) ⊗ δ1 ≤ γ1,0 ⊗ δ1 < γ1,0 = F.Hen
e, ∀t ≥ 0 : F ′(t) < F (t), or equivalently, ∀t ≥ 0 : b(t) > 0, whi
h meansthat the system remains ba
klogged the entire time. Therefore, without anyassumptions on the pro
essing order, a 
ertain work unit 
an, under these 
ir-
umstan
es, be kept forever in the system. Thus, the real delay of that work unitis unbounded. Note that using the standard FIFO pro
essing assumption, we 
anof 
ourse bound the real delay of the system by ∀t ≥ 0 : rd(t) = vd(t) ≤ 3

2
.From this example, we see that the SC property is too weak as a node model foranalyzing non-FIFO systems. Therefore, it is sensible to look for more stringentnode models, as it is done in the following subse
tion.3.2 Using Stri
t Servi
e Curves (S2C) for Non-FIFO SystemsA number of systems provides more stringent servi
e guarantees than 
apturedby SC, ful�lling the so-
alled stri
t servi
e 
urve [25℄ (also known as strongservi
e 
urve [15,2℄ and related to the universal servi
e 
urve 
on
ept in [26℄)De�nition 5. (Stri
t Servi
e Curve � S2C) Let β ∈ F . System S o�ers a stri
tservi
e 
urve β to a �ow, if during any ba
klogged period of duration u the outputof the �ow is at least equal to β(u). A ba
klogged period of duration u at time tis de�ned by the fa
t that ∀s ∈ (t − u, t] : b(s) > 0.Note that any node satisfying S2C also satis�es SC, but not vi
e versa. Forexample, a bounded laten
y node does not provide δT as a stri
t servi
e 
urve.In fa
t, it does not provide any S2C apart from the trivial 
ase β = 0. Onthe other hand, there are many s
hedulers that o�er stri
t servi
e 
urves; forexample, most of the generalized pro
essor sharing-emulating s
hedulers (e.g.,PGPS [26℄, WF2Q [5℄, or round robin s
hedulers like SRR [18℄, to name a few),o�er a stri
t servi
e 
urve of the rate-laten
y type.Now for bounding the real delay under S2C: In fa
t, as was already shown byCruz [12℄ (and 
an also be found in [10℄ (Lemma 1.3.2)), the interse
tion pointbetween an arrival and a stri
t servi
e 
urve 
onstitutes a bound on the lengthof the maximum ba
klogged period and thus also a bound on the real delay forsu
h a system:Theorem 3. (Real Delay Bound for Single S2C Node) Consider a system Sthat o�ers a stri
t servi
e 
urve β. Assume a �ow F traversing the system hasan arrival 
urve α. Then we obtain the following bound on the real delay:

rd(t) ≤ sup{s ≥ 0 : α(s) ≥ β(s)} =: i(α, β).



So, the situation has improved in 
omparison to the SC 
ase: Based on the singlenode result one 
an 
on
eive, for the multiple node 
ase, an iterative appli
ationof Theorem 3 together with the output bound from Theorem 1. More spe
i�
ally,if a tandem of n S2C non-FIFO nodes, ea
h providing a stri
t servi
e 
urve
βj , j = 1, . . . , n, is to be traversed by an α-
onstrained �ow then a bound on thereal delay 
an be 
al
ulated as

rd(t) ≤
n

∑

j=1

i(α ⊘

j−1
⊗

k=1

βk, βj).Setting for example βj = βR,T , j = 1, . . . , n and α = γr,b this results in
rd(t) ≤

n(b + RT ) + n
2
(n − 1)rT

R − r
. (1)Here, we see a typi
al drawba
k of additive bounding methods, with the burstof the tra�
 being paid n times as well as a quadrati
 s
aling of the boundin the number of nodes [11,25℄. The key to avoid this behavior is to performan end-to-end analysis based on a 
on
atenation theorem. Yet, as known anddemonstrated in the next example, S2C does not possess su
h a 
on
atenationproperty.Example 2. (S2C Possesses No Con
atenation Property) Assume two systems

S1 and S2, both providing a stri
t rate-laten
y servi
e 
urve βi = β1,1, i = 1, 2,whi
h are traversed in sequen
e by a �ow F . Let F ′
1 and F ′

2 be the outputfun
tions from S1 and S2, respe
tively. As a 
andidate stri
t servi
e 
urve forthe 
omposite system, we 
onsider β1,2 = β1 ⊗ β2 = β1,2.We now 
onstru
t a ba
klogged period [t1, t2] of the 
omposite system su
hthat
F ′

2(t2) − F ′
2(t1) < β1,2(t2 − t1).thereby showing that β1,2 is not a stri
t servi
e 
urve for the 
omposite system:Let t1 = 0 and t2 = 3 and assume the following behavior of the input andoutput fun
tion

F (t) =

{

ǫ 0 < t < 2
2ǫ 2 ≤ t ≤ 3

, F ′
1(t) =

{

0 0 ≤ t ≤ 1
ǫ 1 < t ≤ 3

,

F ′
2(t) =

{

0 0 ≤ t ≤ 2
ǫ 2 < t ≤ 3

,with any ǫ > 0. It is easy to 
he
k that the 
omposite system is 
ontinuouslyba
klogged during [0, 3] as well as that ea
h individual system is not violatingits stri
t servi
e 
urve property. Nevertheless, for any 
hoi
e of ǫ < 1 we obtain
F ′

2(3) − F ′
2(0) = ǫ < β1,2(3) = 1,whi
h shows that β1,2 is not S2C for the 
omposite system (while, of 
ourse,being SC for it). In fa
t, by extending the example appropriately it 
an be



shown that the only stri
t servi
e 
urve that 
an be guaranteed by the 
ompositesystem is the trivial 
ase β = 0. This 
an be seen by making ǫ arbitrarily smalland alternating between ba
klogged and idle periods of the individual systemssu�
iently often. Another way to view this, is that the ba
klogged period of a
omposite system 
annot be bounded based on the individual systems providinga stri
t servi
e 
urve.4 The Self-Adversarial Approa
hIn this se
tion, we devise an approa
h, 
alled the self-adversarial method, to
ompute a tight delay bound for non-FIFO systems based on a te
hnique thatwas introdu
ed in [30℄.4.1 The Self-Adversarial MethodAs brie�y dis
ussed in Se
tion 1.2, in [30℄, we proposed a te
hnique for 
omputingtight delay bounds in the network of arbitrary (non-FIFO) aggregate multiplex-ers, yet we still made a FIFO pro
essing order assumption per �ow. So, thiste
hnique is not dire
tly appli
able when releasing all FIFO assumptions andbesides arbitrary multiplexing also assumes arbitrary s
heduling within a �ow.Nevertheless, there is a way to exploit the proposed method for the problem athand by transforming the arbitrary s
heduling problem into an arbitrary aggre-gate multiplexing problem. More spe
i�
ally, we split the original �ow, with thearrival 
urve α, into two sub-�ows: one with the arrival 
urve α1 = γ0,ǫ and theother one with the arrival 
urve α2 = α − γ0,ǫ. Both �ows traverse the sameservers as the original �ow. This transformation is illustrated in Figure 1.
...

...Fig. 1. Transformation of the pure non-FIFO problem into an arbitrary aggregatemultiplexing problem.Now the method from [30℄ allows us to �nd the maximum left-over end-to-endservi
e 
urve under arbitrary multiplexing, i.e., under any possible interleavingof the two sub-�ows. To that end, the problem is reformulated as an optimizationproblem that 
an be solved by using standard methods. In [30,7℄, it is shownthat this approa
h a
hieves tight delay bounds. So, in our 
ase we 
an pro
eedwith the following steps:



1. Computation of the left-over servi
e 
urve for sub-�ow 1 a

ording to [30℄:
βl.o.

1 .2. Computation of the delay bound for sub-�ow 1: d1 (ǫ) = h
(

α1, β
l.o.
1

).3. Letting the delay bound for sub-�ow 1 go to the limit: d = limǫ→0 d1 (ǫ).What is e�e
tively done here, is to assume that a part of the �ow pretends to bean adversary to the other part of the �ow when it 
omes to 
ompetition for theforwarding resour
es. This is why we 
all it the self-adversarial method. Takingthis behavior to the limit, i.e., making the adversary part as large as possible,gives us a real delay bound as experien
ed by a single (in�nitesimally small)work unit.We remark that the 
omputation of the horizontal deviation in step 2 im-pli
itly makes a FIFO assumption for sub-�ow 1. Yet, in the limit this is nota problem be
ause a single work unit provides no degrees of freedom for thepro
essing order any more.Note that for the splitting of the original �ow into two sub-�ows we assumedthat ǫ > 0 is 
hosen su
h that α2 ≥ 0. In fa
t, for some arrival 
urves this maynot be possible. More pre
isely, if α(t) is 
ontinuous at t = 0 (e.g., a 
onstantrate arrival 
urve), then the splitting des
ribed is not feasible. In su
h 
ases, theoriginal arrival 
urve should be shifted to the left by some small amount ∆ andset to zero for t ≤ 0. The approa
h is then performed on this new (stri
tly larger)arrival 
urve. To �nd the delay bound under the original arrival 
urve, one lets
∆ → 0. We de
ided to negle
t this (rarely o

urring) te
hni
ality in the abovedes
ription of the self-adversarial method in order not to (further) 
ompli
ateit.4.2 Self-Adversarial vs. Additive Bounding MethodLet us investigate by a simple example how the self-adversarial method worksand also 
ompare it to an additive bounding based on S2C. Assume a token-bu
ket arrival 
urve γr,b for the �ow under investigation (b > 0), whi
h traversestwo servers providing stri
t rate-laten
y servi
e 
urves βRiTi

, i = 1, 2. A

ordingto the additive bounding based on S2C the delay bound then be
omes:
dAD = T1 + T2 +

b + rT1

R1 − r
+

b + r (T1 + T2)

R2 − r
.For the self-adversarial method we �rst split the �ow into two sub-�ows:sub�ow 1 with γ0,ǫ and sub�ow 2 with γr,b−ǫ as arrival 
urves. Pro
eeding withthe steps des
ribed in the previous se
tion we obtain the following delay bound:1. Computation of the left-over servi
e for sub-�ow 1 a

ording to [30℄:

βl.o.
1 = β

min{R1,R2}−r,T1+T2+
b−ǫ+rT1

min{R1,R2}−r
+

rT2
R2−r

.2. Computation of the delay bound for sub-�ow 1:
d1 (ǫ) =

ǫ

min {R1, R2} − r
+ T1 + T2 +

b − ǫ + rT1

min {R1, R2} − r
+

rT2

R2 − r
.



3. Letting the delay bound for sub-�ow 1 go to the limit (ǫ → 0):
dSA = T1 + T2 +

b + rT1

min {R1, R2} − r
+

rT2

R2 − r
.A simple inspe
tion shows that dSA ≤ dAD , where equality only holds if

b = 0∧ (T1 = 0∨ r = 0), whi
h are strong restri
tions. Hen
e, this demonstratesthat the additive method is not tight under most 
ir
umstan
es. Similar problemswith purely min-plus algebrai
 methods are reported and extensively dis
ussedin [30℄. These problems are inherent in using the min-plus algebrai
 approa
h.In parti
ular, by the appli
ation of a min-plus 
onvolution the knowledge on theorder of servers is lost. Yet, this order is 
ru
ial to derive tight delay boundsfor non-FIFO systems. The min-plus algebrai
 approa
h automati
ally mapsa tandem of system to the worst-
ase order it 
ould be in (see [30℄ for moredis
ussions along this line).So, with respe
t to the tightness of the 
omputed bounds, the self-adversarialmethod is superior to the additive method. A potential drawba
k for the self-adversarial method is that the 
omputational e�ort for the self-adversarial method
an be
ome very high. In parti
ular, if arrival and servi
e 
urves are pie
ewise-linear fun
tions then a set of optimization problem needs to be solved �rst beforethe �nal left-over servi
e 
urve 
an be 
onstru
ted a

ording to [30℄ (in [7℄ a moree�
ient and provably tight approa
h is proposed, on whi
h the self-adversarialmethod 
ould also be based). The 
ardinality of that set grows exponentially inthe number of nodes traversed and may qui
kly be
ome prohibitive. For detailssee [30℄, or even better [7℄, whi
h also demonstrates the problem of 
omputing atight delay bound under arbitrary multiplexing in general feedforward networksto be NP-hard.We also remark that the self-adversarial method requires S2C servers (as inother 
ases like, e.g., �xed priority s
hedulers or arbitrary multiplexing s
enar-ios). This requirement is 
ru
ial for setting up the optimization problem in [30℄and a relaxation towards only assuming SC seems infeasible. This means, in par-ti
ular, that bounded laten
y nodes 
annot be analyzed. Similarly, a

ording to[30℄, the self-adversarial method 
an only be applied to pie
ewise-linear 
on
avearrival and 
onvex servi
e 
urves. Su
h a restri
tion does not apply, in prin
iple,to the additive bounding method.While the tightness of the self-adversarial method is �inherited� from [30℄, it
an also be understood in the original system. In parti
ular, if the pro
essingorder applied is to always 
hoose the work unit that has entered the network last(assuming work units are time-stamped when they enter the network) then we
onje
ture that the bound 
an a
tually be a
hieved. This pro
essing order hasalso been 
oined shortest-in-system (SIS) in the realm of adversarial queueingtheory [1℄. If only one node is traversed, then SIS be
omes LIFO and 
learly 
on-stitutes the worst-
ase pro
essing order. In multi-node s
enarios, we 
onje
turethat SIS produ
es a worst-
ase sample path if greedy arrivals (exa
tly follow-ing the arrival 
urve) and lazy servers (exa
tly following the servi
e 
urve) areassumed.



As the last remark, we note that if there is also 
ross-tra�
 from other �owswe 
an �rst apply [30℄ to derive a left-over servi
e 
urve for the �ow of inter-est and then apply the self-adversarial method to arrive at tight bounds underarbitrary multiplexing and s
heduling, i.e., a 
ompletely non-FIFO s
enario.5 Numeri
al ExperimentsTo give some feeling for the improvements a
hievable by using the self-adversarialapproa
h 
ompared to an additive bounding based on S2C we provide somenumeri
al experiments. In addition, we demonstrate what 
ost is in
urred whenreleasing the FIFO assumption. For these numeri
al experiments we use simplesettings: as arrival 
urve for the �ow to be analyzed we assume a token bu
ket
γr,b where we set r = 10[Mbps] and b = 5[Mb] (unless we vary the rate r toa
hieve a 
ertain utilization); for the servi
e 
urves of the nodes to be traversedwe use a rate-laten
y fun
tion βR,T with R = 20[Mbps] and T = 0.01[s]. Unlesswe use the number of nodes as a primary fa
tor in the experiments we assume
n = 10 nodes to be traversed by the �ow under investigation.5.1 Comparison of Self-Adversarial and Additive BoundingIn this �rst set of numeri
al experiments we investigate how the self-adversarial(SA) and additive (AD) bounding methods 
ompare to ea
h other. In Figure2(a) the two methods are shown for a varying number of nodes (from 2 to 20). Toemphasize the bad s
aling of the additive method we also provide results for thesame experiment with a larger number of nodes to be traversed (up to 100) inFigure 2(b). In both graphs it is obvious that the end-to-end analysis fa
ilitatedby the self-adversarial approa
h is highly superior and s
ales linearly with thenumber of nodes, whereas the additive bounding method s
ales quadrati
allywith the number of nodes traversed and thus be
omes a very 
onservative boundqui
kly.A di�erent view on the relative performan
e of self-adversarial and additivemethods is provided in Figure 2(
). Here, the a

eptable utilizations (
apturedby the ratio of the the rate for the �ow under investigation and the servi
e rateof the tandem, i.e., r

R
) for a given delay bound are shown for both methods.This information 
an be used for admission 
ontrol purposes. Again, as 
an be
learly seen, the self-adversarial method outperforms the additive bounding byfar, espe
ially for lower delay bounds. For example, if we desire a delay boundof 2s, then an admission 
ontrol using the additive bounding would return withan infeasible reply, whereas under the self-adversarial approa
h we 
ould admittra�
 up to ≈ 80% of the servi
e rate.5.2 FIFO vs. Non-FIFO Delay BoundsIn the next set of numeri
al experiments, we investigate the 
ost of releasingthe FIFO assumption in terms of delay bounds. For that purpose, we vary the
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(d) FIFO vs. non-FIFO delay boundsdepending on the utilization.Fig. 2. Comparison of self-adversarial approa
h to other analysis methods under dif-ferent metri
s. Sub�gures (a) and (b) show results for 50% utilization.utilization by in
reasing the sustained rate of the tra�
 �ow under investigation(while at the same time s
aling the bu
ket depth proportionally). As we 
anobserve from Figure 2(d), only for higher utilizations there is a signi�
ant di�er-en
e between the FIFO and non-FIFO delay bounds if using the self-adversarialbounding approa
h. On the other hand, if the additive bounding was used, the
ost of releasing FIFO assumptions is high, whi
h may be why FIFO behavioris often assumed a ne
essary 
ondition to a
hieve good delay bounds [27℄. Yet,under stri
t servi
e 
urve assumptions and using the self-adversarial approa
hthis assumption is not ne
essarily required any more.From an appli
ation perspe
tive, the bottom line is that only for highlyutilized systems it is ne
essary to enfor
e a FIFO behavior, as far as delaybounds are 
on
erned. For systems with lower utilizations, optimizations su
has for example link aggregation or multi-stage swit
hing fabri
s do not in
ur ahigh 
ost in terms of worst-
ase delay bounds.



6 Con
lusion and Dis
ussionIn this paper, it was our goal to extend the s
ope of network 
al
ulus towardsnon-FIFO systems, as non-FIFO behavior is a reality in many networking s
e-narios. It turned out that the existing servi
e 
urve de�nitions are not satisfyingunder non-FIFO s
heduling: they are either too loose to enable any boundingor too stri
t to allow for an e�
ient end-to-end analysis. Therefore, we deviseda new approa
h, 
alled the self-adversarial bounding method, whi
h is based onprevious work of ours and is provably tight. By numeri
al examples, we showedthat the self-adversarial approa
h is far superior to existing methods.The self-adversarial approa
h allows to re
over the pay-bursts-only-on
e phe-nomenon for non-FIFO systems, whi
h had been disputed to be valid under non-FIFO s
heduling in literature [27℄. This seeming 
ontradi
tion is due to di�erentassumptions on the servi
e provided by nodes, guaranteed rate as in [27℄, orstri
t servi
e 
urve, as in this paper. Sin
e the 
on
atenation of guaranteed ratenodes is based on their equivalen
e to rate-laten
y servi
e 
urves (modulo pa
k-etization e�e
ts), a 
onvolution of them only provides an SC guarantee and thus
annot bound the real delay, as dis
ussed in Se
tion 3. Hen
e, the only resort isan additive bounding whi
h, however, 
annot re
over the pay-bursts-only-on
ephenomenon for the arbitrary s
heduling 
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