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ABSTRACT
In this paper we describe the design, implementation, and
analytical background of the DISCO Network Calculator.
The DISCO Network Calculator is an open-source toolbox
written in JavaTM which we developed for worst-case anal-
yses based on network calculus. To our knowledge it is the
�rst of its kind. It allows to do network analyses regard-
ing performance characteristics such as delay and backlog
bounds for piecewise linear arrival and service curves. We
illustrate the tool's usefulness by two comprehensive exam-
ple applications.

Categories and Subject Descriptors
C.2 [Computer Systems Organization]: Computer Com-
munication Networks; C.4 [Computer Systems Organi-
zation]: Performance of Systems�Modeling Techniques

Keywords
Network calculus, deterministic guarantees, tool support.

1. INTRODUCTION
1.1 Motivation
Bounding performance characteristics in communication net-
works is a fundamental issue and has important applications
in network design and control. Network calculus, which is a
set of relatively new developments that provide deep insights
into �ow problems encountered in networks of queues [11],
provides a deterministic framework for worst-case analysis
of delay and backlog bounds. Its mathematical foundation
lies in min-plus algebra [2]. Network calculus has found
numerous applications, most prominently in the Internet's
Quality of Service (QoS) proposals IntServ and Di�Serv,
but also in other scenarios as, for example, wireless sensor
networks [15], switched Ethernets [17], or even Systems-on-
a-Chip (SoC) [3]. To mention a further, somewhat di�erent
usage, it has been applied in order to speed-up simulations as
well [9]. Hence, besides queueing theory it has established
as a valuable methodology to model networks of queues.
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Yet, up to now there is no publicly available tool support
for network calculus-based analyses. We believe that such a
tool support is a crucial ingredient for the further �ourish-
ment of the promising network calculus methodology. So,
as a �rst step we have implemented the DISCO Network
Calculator, a toolbox consisting of min-plus algebraic base
operations as well as comprehensive algorithms for di�erent
ways of analysing complete networks. The DISCO Network
Calculator class library is written in JavaTMand is publicly
available1. We hope it will be of use to other researchers
interested in network calculus, and that it will be the basis
for even more powerful network calculus tools in the future.

1.2 Network Calculus Background
Network calculus is a min-plus system theory for determin-
istic queuing systems. The important concept of minimum
service curve was introduced in [6], [13], [4], [10], [1] and
the concept of maximum service curve in [7]. As network
calculus is built around the notion of cumulative functions
for input and output �ows of data, the set of real-valued,
non-negative, and wide-sense increasing functions passing
through the origin plays a major role:

F =
{
f : R+ → R+,∀t ≥ s : f(t) ≥ f(s), f(0) = 0

}

In particular, the input function F (t) and the output func-
tion F ∗(t) are ∈ F . They cumulatively count the number of
bits that are input to, respectively output from, a system S.
Throughout the paper, we assume in- and output functions
to be continuous in time and space.

Definition 1. (Min-plus Convolution and Deconvolution)
The min-plus convolution and deconvolution of two functions
fand g are de�ned to be

(f ⊗ g) (t) =

{
inf0≤s≤t {f(t− s) + g(s)} t ≥ 0

0 t < 0

(f ® g) (t) = sup
u≥0

{f(t + u)− g(u)}

Let us now turn to the performance characteristics of �ows
which can be bounded by network calculus means:

Definition 2. (Backlog and Delay) Assume a �ow with
input function F that traverses a system S resulting in the
1http://disco.informatik.uni-kl.de/content/Downloads



output function F ∗. The backlog of the �ow at time t is
de�ned as

b(t) = F (t)− F ∗(t)

Assuming �rst-in-�rst-out delivery, the delay for a bit input
at time t is de�ned as

d(t) = inf {τ ≥ 0 : F (t) ≤ F ∗(t + τ)}

Now the arrival and server processes speci�ed by input and
output functions are bounded based on the central network
calculus concepts of arrival and service curves:

Definition 3. (Arrival Curve) Given a �ow with input
function F a function α ∈ F is an arrival curve for F if and
only if

∀t, s ≥ 0, s ≤ t : F (t)− F (t− s) ≤ α(s)

⇔ F ≤ F ⊗ α ⇔ α ≥ F ® F

Note that an arrival curve which is not sub-additive can be
improved by its sub-additive closure [11]. As a further re-
mark, remember that any concave function is sub-additive.
The next corollary is a simple implication of the de�nition
of arrival curves and the isotonicity of the min-plus convo-
lution.

Corollary 1. (Knowledge of Several Arrival Curves) If
α1 and α2 are arrival curves for a �ow F then α1 ⊗ α2 is
also an arrival curve for F .

Definition 4. (Minimum and Maximum Service Curve)
If the service provided by a system S for a given input func-
tion F results in an output function F ∗ we say that S o�ers
a minimum service curve β respectively a maximum service
curve β̄ if and only if

F ∗ ≥ F ⊗ β respectively F ∗ ≤ F ⊗ β̄

There is also a strict (minimum) service curve de�nition
which is less general than the minimum service curve but is
sometimes required to allow for an analysis.

Definition 5. (Strict Minimum Service Curve) Let β ∈
F . We say that system S o�ers a strict minimum service
curve β to a �ow if, during any backlogged period of duration
u, i.e. for any t for which ∀s, 0 ≤ s < u : b(t − s) > 0, the
output of the �ow is at least equal to β(u).

Using those concepts it is possible to derive basic perfor-
mance bounds on backlog, delay, and output:

Theorem 1. (Performance Bounds) Consider a system
S that o�ers a minimum service curve β and a maximum
service curve β̄. Assume a �ow F traversing the system
has an arrival curve α. Then we obtain the following perfor-
mance bounds:
Backlog: ∀t : b(t) ≤ (α® β) (0) =: v(α, β)
Delay: ∀t : d(t) ≤ inf {t ≥ 0 : (α® β) (−t) ≤ 0} =: h (α, β)
Output (arrival curve α∗ for F ∗): α∗ ≤(

α⊗ β̄
)® β

One of the strongest results of network calculus (albeit be-
ing a simple consequence of the associativity of ⊗) is the
concatenation theorem that enables us to collapse tandems
of systems into a single system:

Theorem 2. (Concatenation Theorem for Tandem Sys-
tems) Consider a �ow that traverses a tandem of systems S1

and S2. Assume that Si o�ers a minimum service curve βi

and a maximum service curve β̄i, i = 1, 2 to the �ow. Then
the concatenation of the two systems o�ers a minimum ser-
vice curve β1 ⊗ β2 and a maximum service β̄1 ⊗ β̄2 to the
�ow.

So far we have only covered the tandem network case, the
next result factors in the existence of other interfering �ows.

Theorem 3. (Blind Multiplexing Nodal Service Curve)
Consider a node blindly multiplexing two �ows 1 and 2. As-
sume that the node guarantees a strict minimum service
curve β and a maximum service β̄ to the aggregate of the
two �ows. Assume that �ow 2 has α2 as an arrival curve.
Then

β1 = [β − α2]
+

is a minimum service curve for �ow 1 if β1 ∈ F . β̄ remains
the maximum service curve also for �ow 1 alone. Here, the
[.]+operator is de�ned as [x]+ = x ∨ 0, where ∨ denotes the
maximum operator.

Theorem 3 makes no assumptions on the way �ows are mul-
tiplexed at the node (blind multiplexing). There is also a
known network calculus result telling us how to model the
service curve of a FIFO node under cross-tra�c from other
�ows:

Theorem 4. (FIFO Nodal Service Curve) Consider a FIFO
node multiplexing two �ows 1 and 2. Assume that the node
guarantees a minimum service curve β to the aggregate of the
two �ows. Assume that �ow 2 has α2 as an arrival curve.
De�ne the family of functions

β1
θ (t) = [β (t)− α2 (t− θ)]+ 1{t>θ}

Then for any θ ≥ 0 �ow 1 is guaranteed a service β1
θ (if β1

θ is
wide-sense increasing). Here, the indicator function 1{cond}
is de�ned as 1 if cond is true and 0 otherwise.

There is very profound work on aggregate multiplexing in
general networks, the most well-known result being proba-
bly given in [5]. The delay bounds derived in these works
are based on a FIFO multiplexing assumption. Here we only
extract the su�cient existence condition for a delay bound
which is valid under FIFO as well as under blind multiplex-
ing:

Theorem 5. (Aggregate Multiplexing in General Networks)
Assume a general network of diameter h with any node n
providing a sustained rate Rn and node n having a bound



on the rate of all incoming tra�c Cn. Let us de�ne the uti-
lization for node n as un =

∑
n∈f rf

Rn
, with rf denoting the

sustained rate of a �ow f and n ∈ f meaning that �ow f
traverses node n. Then a delay bound exists if

∨
n

un <
∧
n

σ{Cn>Rn}

(
Cn

(Cn −Rn) (h− 1) + Rn

)

with σ{cond} (x) equals x if cond is true and 1 otherwise. ∧
denotes the minimum operator.

Since even moderately sized general networks are only stable
for very low utilizations, it is often more suitable to restrict
network calculus analyses to so-called feed-forward networks.

Definition 6. (Feed-Forward Network) A network is feed-
forward if it is possible to �nd a numbering of its links such
that for any �ow through the network the numbering of its
traversed links is an increasing sequence.

A sink-tree is a simple example of a feed-forward network.
It is well-known and easy to show that feed-forward net-
works are stable, i.e. a �nite delay bound exists, for any
utilization ≤ 1 [11]. While many networks are obviously not
feed-forward, a considerable number of important instances
like switched networks, wireless sensor networks, or MPLS
networks are. Furthermore, there are very e�ective tech-
niques to make a general network feed-forward. One of the
advanced techniques (in comparison to a simple spanning
tree) is the so-called turn-prohibition algorithm [18].

2. NETWORK CALCULUS WITH
PIECEWISE LINEAR CURVES

To be able to compute performance bounds in networks of
queues, we need to apply basic network calculus operations
like min-plus convolution and deconvolution on the arrival
and service curves we encounter in a given scenario. A class
of functions which is both tractable as well as general enough
to express all common cases is that of piecewise linear func-
tions. Hence, in this section we present basic network calcu-
lus operations for general piecewise linear arrival and service
curves, which are implemented in the DISCO Network Cal-
culator. On these operations the network analysis will be
built in Section 3.

2.1 A Catalog of Useful Functions
In the de�nition of piecewise linear arrival and service curves
the following catalog of functions from F is helpful:

Definition 7. (Auxiliary functions from F)
Burst delay functions: δT (t) =

{
+∞ t > T
0 t ≤ T

A�ne function (token bucket): γr,b(t) =

{
rt + b t > 0

0 t ≤ 0

Rate-latency function: βR,T (t) =

{
R(t− T ) t > T

0 t ≤ T

From these functions general piecewise linear functions can
be constructed using the

∨
and

∧
operators, as we will

encounter in the next subsection. Note that, as mentioned
in [11], it applies that ∀f ∈ F : (f ⊗ δT ) (t) = f (t− T ).
Hence, a convolution with the burst delay function δT results
in a shift along the x-axis according to the value of T .

2.2 Choice of Arrival and Service Curves
As already discussed, focusing on piecewise linear functions
as arrival and service curves is no practical restriction, since
this is still general enough to cover virtually any realistic
case of tra�c and server models, or at least approximate
them closely.

2.2.1 Arrival Curve
Let us assume a piecewise linear concave arrival curve:

α =

n∧
i=1

γri,bi

On the one hand it is possible to already use such a function
as a tra�c source description in order to be able to closely
approximate a source's worst case behaviour. On the other
hand, looking at the network analysis we cannot avoid to
model arrival curves inside the network as general piecewise
linear concave functions when we factor in maximum service
curves. This is due to the fact that more and more complex
piecewise linear functions result from the addition of multi-
ple �ows induced by their multiplexing. To assume concav-
ity is no major restriction. As discussed in [11], non-concave
functions (unless they are not sub-additive, to be accurate)
can be improved by pure knowledge of themselves, thus they
cannot be tight.

2.2.2 Minimum Service Curve
Let us assume a piecewise linear convex minimum service
curve:

β =

m∨
j=1

βRj ,Tj

A piecewise linear convex minimum service curve results
from deriving the service curve for a �ow of interest at a
node that multiplexes this �ow with other �ows which, as
an aggregate, have a piecewise linear concave arrival curve.
Again, it might also be useful to model a node's service
curve using several linear segments. To assume convexity
is not a major restriction, as it might for instance apply if
a node also has other duties. Though, in contrast to the
arrival curve which is not sensible for non-concave functions
(non-sub-additive to be exact), there are potentially sensible
non-convex service curves as for example presented in [19],
[14], and [12].

2.2.3 Maximum Service Curve
Let us assume a piecewise linear almost concave maximum
service curve:

β̄ =

(
l∧

k=1

γr̃k,b̃k

)
⊗ δL

By almost concave we mean that the curve is only concave
for values of t > L and is 0 for values t ≤ L (this kind of
curves has also been coined pseudo-a�ne in [12]). If L > 0
this models a node that has a certain minimum latency.



The piecewise concavity models again the fact that a node
may also have other duties. The concavity of the maximum
service curve results from taking a best case perspective,
unlike the worst case perspective of the minimum service
curve.

Before discussing the required network calculus operations
on these curves, we �rst make an observation on how the
output bound of Theorem 1 can be improved under maxi-
mum service curves as they are assumed here.

2.3 Tightening the Output Bound
Realising that the maximum service curve induces arrival
constraints on the output we can improve the output bound
from Theorem 1 by the following lemma (we state it slightly
more general than necessary for our purposes�concave in-
stead of just piecewise linear concave; a proof of this result
and the following lemmas and theorems can be found in
[16]):

Lemma 1. (Improvement of Output Bound) Under the
same assumptions as in Theorem 1, let additionally L be
such that L = sup{t ≥ 0 : β̄ (t) = 0}. L can be regarded as
minimum/�xed delay for the system. If β̄ ⊗ δ−L is concave
then the output bound for any �ow F can be calculated as

α∗ =
((

α⊗ β̄
)® β

)⊗ (
β̄ ⊗ δ−L

)

2.4 Network Calculus Operations
We now have everything set to examine the network calculus
operations we require as basic building blocks for the net-
work analysis algorithms implemented in the DISCO Net-
work Calculator. First of all, computing output bounds of
the �ows in the network is an important operation, as it al-
lows to separate �ows of interest from interfering �ows by
using Theorem 3 or Theorem 4, respectively the results we
present in Theorem 6. Lemma 1 gives us the general rule to
compute the output bound:

α∗ =
((

α⊗ β̄
)® β

)⊗ (
β̄ ⊗ δ−L

)

Hence, starting from the innermost operation, the convolu-
tion of the arrival curve and the maximum service must be
determined �rst:

α⊗ β̄ = α⊗
((

l∧

k=1

γr̃k,b̃k

)
⊗ δL

)
=

(
α⊗

l∧

k=1

γr̃k,b̃k

)
⊗ δL

=
(
α ∧ (

β̄ ⊗ δ−L

))⊗ δL =: σ

Here we used �rst the associativity of ⊗, then the fact that
⊗ is equivalent to ∧ for concave functions (see [11]). While
σ might look complex, it is easy to compute for the DISCO
Network Calculator: �rst shift the maximum service curve
to the left by its latency, then take the minimum with the
concave arrival curve and shift the result to the right by the
latency of the maximum service curve. Next, the deconvo-
lution of the resulting almost concave function σ with the
minimum service curve is calculated as:

σ ® β = (σ ⊗ δ−X)− β (X) =: ζ

where X = supt≥0

{
dσ
dt

(t) ≥ dβ
dt

(t)
}
. X must be at one

of the in�exion points of σ and β, such that an intelligent

search could be implemented in the DISCO Network Calcu-
lator to e�ciently �nd X. When X has been determined,
the operations are again simple for the DISCO Network Cal-
culator: shift σ by X to the left and push the result down
by β(X). Note that the resulting ζ is concave since always
X ≥ L. So �nally ζ is convolved with the right-shifted max-
imum service curve (which is also concave):

ζ ⊗ (
β̄ ⊗ δ−L

)
= ζ ∧ (

β̄ ⊗ δ−L

)

This convolution is again simply computed by the DISCO
Network Calculator as the minimum between the concave
ζ and the maximum service curve shifted to the left by its
latency. So, in terms of the initial curves we receive as an
overall result for the output bound:

α∗ =
(((

α ∧ (
β̄ ⊗ δ−L

))⊗ δL+X

)− β (X)
) ∧ (

β̄ ⊗ δ−L

)

Equipped with this, a single node analysis can be accom-
plished. However, another basic operation consists of using
the concatenation theorem to collapse systems in sequence
into one large system by calculating their min-plus convo-
lution. So the convolution of piecewise linear minimum and
maximum service curves must be computed by the DISCO
Network Calculator. For the minimum service curves we
can draw upon a rule from [11], which says that piecewise
linear convex functions ∈ F can be min-plus convolved by
putting together their linear segments in the order of increas-
ing slopes. For maximum service curves the next lemma
gives us the computation of the min-plus convolution of two
almost concave functions. Again, it consists of simple shifts
and could thus easily and e�ciently be implemented in the
DISCO Network Calculator:

Lemma 2. (Min-Plus Convolution of Almost Concave Func-
tions) Consider two almost concave piecewise linear func-
tions β̄1 and β̄2 with latencies L1 and L2, then their min-
plus convolution can be computed as follows

β̄1 ⊗ β̄2 =
(
β̄1 ⊗ δ−L1

) ∧ (
β̄2 ⊗ δ−L2

)⊗ δL1+L2

3. NETWORK ANALYSIS ALGORITHMS
In this section, we �rst discuss di�erent alternatives to cal-
culate end-to-end service curves for certain �ows of inter-
est. Next, we present di�erent network analysis methods, of
which none is strictly dominating the others, but their rela-
tive performance depends upon the given network scenario.
Thus we implemented all these options for di�erent service
curves and network analysis algorithms in the DISCO Net-
work Calculator.

3.1 End-to-End Service Curve Calculation
Before we come to the actual algorithms for network analy-
sis, applying the basic operations that were just presented,
we investigate di�erent alternatives to derive the end-to-
end service curve for a �ow of interest through a network of
queues. For the ease of presentation we con�ne the discus-
sion to blind multiplexing nodes, although we realised the
FIFO multiplexing case in the DISCO Network Calculator
as well (wherever possible). One possibility is to derive the
end-to-end service curve based on the concatenation the-
orem and the result for single node blind multiplexing in
Theorem 3. This evident method is mentioned in [11]. For
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Figure 1: Nested interfering �ows scenario.

example, if a scenario as depicted in Figure 1 is to be anal-
ysed for �ow 1, a straightforward end-to-end service curve
for �ow 1 would be determined as follows (using the notation
in Figure 1):

βSF
1 = [β1 − α2 − α3]

+ ⊗ [β2 − α∗2 − α∗3]
+ ⊗ [β3 − α∗∗3 ]

+

Yet, another way to analyse the system is to concatenate
node 1 and 2, subtract �ow 2 and thus receive the service
curve for �ow 1 and 3 together, concatenate this with node
3 and subtract �ow 3, essentially making optimal use of the
sub-path sharing between the interfering �ows:

βPS
1 =

[
[(β1 ⊗ β2)− α2]

+ ⊗ β3 − α3

]+

If, for example, βi = β3,0, i = 1, 2, 3 and α2 = α3 = γ1,1 we
obtain: βSF

1 = β1,12 1
2
and βPS

1 = β1,2. Hence, exploiting the
sub-path sharing between the interfering �ows, we obtain
an end-to-end service curve with considerably lower latency.
Put in other words, we have to pay for the blind multiplexing
of the �ows only once, which is why we also call this phe-
nomenon the pay multiplexing only once (PMOO) principle,
in analogy to the well-known pay bursts only once principle
[11]. Basically the same observation was made in [8], [12]
for FIFO multiplexing under the special case of token bucket
arrival curves and rate-latency service curves. We have de-
rived an end-to-end service curve for blind multiplexing ex-
ploiting the PMOO principle under general piecewise linear
concave arrival curves and general piecewise linear convex
service curves in [16].

The di�culty in obtaining the end-to-end service under blind
multiplexing for a �ow of interest lies in situations as de-
picted in Figure 2. Here, in contrast to the scenario of nested
interfering �ows as in Figure 1, we have a scenario of over-
lapping interfering �ows: �ows 2 and 3 interfere with �ow 1,
our �ow of interest, and share some servers with each other
but each of them also traverses servers the other does not
traverse. For such a scenario the end-to-end service curve
cannot be derived as easily as demonstrated before but re-
quires to look deeper into the input and output relationships
of the �ows. The following theorem states how to calculate
the end-to-end service curve under blind multiplexing, ex-
ploiting the PMOO principle for the canonical example of
overlapping interfering �ows in Figure 2.

Theorem 6. (E2E Minimum Service Curve under Blind
Multiplexing � Pay Multiplexing Only Once Principle)
Consider a scenario as shown in Figure 2, a �ow of interest
F1 is interfered by two overlapping �ows F2 and F3. F2

and F3 have arrival curves α2 and α3. The three servers
o�er (strict) piecewise linear convex minimum service curves
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Figure 2: Overlapping interfering �ows scenario.

β1 =
ni∨

i=1

βRi,Ti , β2 =
nj∨

j=1

βR̂j ,T̂j
, and β3 =

nk∨
k=1

βR̃k,T̃k
. If

α2 =
nl∧

l=1

γrl,bl and α3 =
nm∧

m=1

γr̂m,b̂m
are piecewise linear

concave arrival curves then

φ =

ni∨
i=1

nj∨
j=1

nk∨

k=1

nl∨

l=1

nm∨
m=1

βRi,j,k,l,m,Ti,j,k,l,m

with
Ri,j,k,l,m = (Ri − rl) ∧

(
R̂j − rl − r̂m

)
∧

(
R̃k − r̂m

)

and
Ti,j,k,l,m = Ti + T̂j + T̃k

+
bl + b̂m + rl

(
Ti + T̂j

)
+ r̂m

(
T̂j + T̃k

)

(Ri − rl) ∧
(
R̂j − rl − r̂m

)
∧

(
R̃k − r̂m

)

constitutes a strict (piecewise linear convex) end-to-end ser-
vice curve for the �ow of interest, in particular F ∗∗∗1 ≥
F1 ⊗ φ.

Hence, for a scenario as depicted in Figure 2 the end-to-end
service curve for the �ow of interest is determined as follows:
A rate-latency function is calculated for each combination
of (1) token buckets in the arrival curve descriptions of in-
terfering �ows and (2) rate-latency functions of the nodal
service curve descriptions. The rate of this function is the
minimal residual rate at the nodes after the rates of the
respective token buckets of interfering �ows have been de-
ducted. More interestingly, the latency is composed of the
sum of the nodal latency terms and the burst terms of the
interfering �ows (also accounting for the burstiness increase
due to the latency of servers), each paid only once at the
server with lowest residual rate. From all the resulting rate-
latency functions the pointwise maximum has to be taken
to deliver the end-to-end service curve for the �ow of inter-
est. The generalization to an arbitrary number of nodes is
notationally complex, therefore it is left out here. It had
of course to be taken into account for the implementation
of the DISCO Network Calculator. The derivation of the
end-to-end maximum service curve is simple and given in
the next lemma:

Lemma 3. (E2E Maximum Service Curve) Consider a
�ow that traverses a sequence of systems Si, i = 1, . . . , n,
where it is multiplexed with an arbitrary number of �ows.
Assume each of the systems o�ers a nodal maximum service
β̄i, i = 1, . . . , n, then the �ow is o�ered β̄ =

⊗n
i=1 β̄i as a

maximum service on its path.



Algorithm 1 Total Flow Analysis
ComputeDelayBound (�ow of interest f)

ComputeOutputBound(sink(f), {all �ows to sink(f)})
delaytotal = 0.0
forall nodes i on the path from source to sink(f)

delaytotal+ = h
(
αpred

i , βeff
i

)

return delaytotal

ComputeOutputBound(from node i, �ows F)
forall pred(i)

αpred
i += ComputeOutputBound(pred(i),

{�ows to node i from pred(i)}∩F)
αexcl += ComputeOutputBound(pred(i),

{�ows to node i from pred(i)}\F)
βeff

i = [βi − αexcl]
+

return
((

αpred ⊗ β̄i

)® βeff
i

)
⊗ (

β̄i ⊗ δLi

)

Next, we present the algorithms to analyse networks of queues.
We focus on the delay bound computation. The backlog
bound computation is analogous and just requires to com-
pute the vertical deviation v where for the delay bound the
horizontal deviation h is calculated. Of course, delay as
well as backlog bound computations are implemented in the
DISCO Network Calculator.

3.2 Total Flow Analysis
The �rst network analysis algorithm is conceptually the eas-
iest one. It is e�ectively a node-by-node analysis, where for
each node all �ows that share this node with the �ow of
interest are analysed as a whole, hence its name total �ow
analysis. So, the total �ow analysis does not make use of
the concatenation theorem like the other algorithms in the
following sections. Therefore it usually performs worse in
larger network scenarios. For smaller scenarios, where a
�ow of interest is comparatively small to the overall �ow, it
can also perform better, though.

The algorithm (on a high level) to perform the network anal-
ysis is given in Algorithm 1. First we have to recursively
compute the output bounds of all sensor nodes on the path
from source to sink for the �ow of interest (starting the re-
cursion at the sink). Here, we sum all tra�c of �ows joining
the �ow of interest and having the same sink as the �ow of
interest. Next we sum all cross-tra�c that joins the �ow of
interest but also leaves it again on the way to a sink di�er-
ent from that of the �ow of interest. The reduction in the
service curve guarantee by a given node on the path of the
�ow of interest is then calculated based on Theorem 3 using
the cross-tra�c (bounded by αexcl) and the nodal service
curve βi. At the end of the output bound computation, the
min-plus deconvolution of the overall tra�c towards the sink
of the �ow of interest (bounded by αpred

i ) and the e�ective
service curve of the given node βeff

i is computed.

For each node on the path of the �ow of interest the e�ec-
tive service curves βeff

i and the bound on the overall tra�c
towards the sink of the �ow of interest αpred

i are stored.
These are then used in the delay bound computation which
now works its way up starting from the source of the �ow of
interest to its sink. At each node the horizontal deviation

Algorithm 2 Separated Flow Analysis
ComputeDelayBound (�ow of interest f)

forall nodes i ∈ path(f) starting at sink(f)
forall pred(i)

αpred+= ComputeOutputBound(pred(i),
{�ows to node i from pred(i)}\{f})

βeff
i = [βi − αpred]+

βSF =
⊗n

i=1 βeff
i

return h
(
αf , βSF

)

ComputeOutputBound(from node i, �owset F)
forall pred(i)

αpred+ =ComputeOutputBound(pred(i),
{�ows to node i from pred(i)}∩F)

αexcl+= ComputeOutputBound(pred(i),
{�ows to node i from pred(i)}\F)

βeff
i = [βi − αexcl]

+

return
((

αpred ⊗ β̄i

)® βeff
i

)
⊗ (

β̄i ⊗ δLi

)

between αpred
i and βeff

i (i.e. the per-hop delay bound) is
calculated and summed up resulting in an end-to-end delay
bound for the �ow of interest.

3.3 Separated Flow Analysis
The next network analysis algorithm uses the concatenation
theorem. It essentially separates the �ow of interest from
the cross-tra�c by other �ows joining it on its way from
source to sink, which is why we have called it separated �ow
analysis. It is again based on Theorem 3 and the way it is
done is described on a high level in Algorithm 2. It con-
sists of two procedures: One to compute the delay bound
for the �ow of interest using the nodal service curve un-
der blind multiplexing from Theorem 3 and convolving all
nodal service curves to �nd the end-to-end service curve for
the �ow of interest which is then used to compute a delay
bound for the �ow. To be able to compute the nodal service
curve, again a procedure to compute the output bound for
all interfering �ows at a certain node is required. This is a
recursive procedure which needs to take into account the ef-
fect of a general feed-forward network that even �ows which
never share a server with the �ow of interest may a�ect the
�ow of interest transitively, by interfering with a �ow which
in turn interferes with the �ow of interest. As already men-
tioned above, the separated �ow analysis is often superior
to using the total �ow analysis, since it leverages the power
of the concatenation theorem and thus pays the burst of the
�ow of interest only once. However, as presented in Section
3.1 there is a di�erent way to compute the end-to-end ser-
vice curve for the �ow of interest which is often superior to
straightforwardly using Theorem 3 and which allows to pay
the multiplexing with each interfering �ow only once.

3.4 PMOO Analysis
This network analysis algorithm is based on Theorem 6 and
the way it is done is described in Algorithm 3. It consists of
three procedures. The simplest is the one which computes
the delay bound by calling another procedure to compute
the end-to-end service curve for the �ow of interest accord-
ing to Theorem 6. From the result it then calculates the
delay bound for the �ow of interest. The main complexity
lies in the procedure to compute the PMOO service curve.



Algorithm 3 PMOO Analysis
ComputeDelayBound (�ow of interest f)

βPMOO= ComputePMOOServiceCurve(path(f), {f})
return h

(
αf , βPMOO

)

ComputePMOOServiceCurve(path p, �owset F )
eliminate rejoining interfering �ows
merge parallel interfering �ows into �owsets Fi

forall interfering �owsets Fi

forall pred(nFi) of the ingress node nFi of Fi

αFi+= ComputeOutputBound(pred(nFi), Fi)
calculate βPMOO using αFi according to Theorem 6
return βPMOO

ComputeOutputBound(from node i, �owset F )
�nd shared path p of �ows in F starting at node i
call s the last node on path p (→split point)
forall pred(s)

αsplit+= ComputeOutputBound(pred(s),
{�ows to node s from pred(s)}∩F)

βPMOO
p = ComputePMOOServiceCurve(p, F)

calculate β̄PMOO
p according to Lemma 3

return
((

αsplit ⊗ β̄PMOO
p

)® βPMOO
p

)⊗ (
β̄PMOO

p ⊗ δLp

)

Initially, the path of the �ow of interest needs to be pre-
pared to enable an e�cient application of the PMOO result.
At �rst, �ows that join and leave the �ow of interest sev-
eral times are eliminated by introducing fresh �ows for each
later rejoin (with the arrival constraints of the original �ow
at that node in the network, of course). Next, parallel inter-
fering �ows, i.e. �ows that have the same ingress and egress
nodes, are merged together into a �ow set which is treated
as one �ow for the computation of the service curve. The
merging helps to keep the procedure as e�cient as possible,
since fewer �ows have to be taken into account. However,
care must be taken when computing the arrival constraints
for each of the �ow sets, since the �ows contained in a set
are generally not in parallel throughout the whole network.
This is done by a separate procedure which we discuss in
a moment. After the arrival constraints of each of the �ow
sets have been computed, Theorem 6 is applied to compute
the desired end-to-end PMOO service curve. This statement
sounds harmless, however the computation of the maximum
over all token buckets of the piecewise linear arrival curves of
interfering �ows and rate-latency functions of the piecewise
linear service curve of the nodes on the path of the �ow of
interest can be a computationally intensive task. We come
back to this issue in the next section. The last procedure
serves to compute the output bound of a �ow set behind a
given node. Here, the PMOO result is reused as much as
possible by �rst �nding the sub-path shared by all �ows in
the �ow set, respectively the node where the �ow set splits.
From that split point the procedure recurs on itself for each
of the smaller �ow sets after the split point. With the sum
of those output bounds after the split point, the procedure
now calls in indirect recursion the procedure for the com-
putation of the PMOO service curve for the shared path of
the �ow set. Furthermore, the maximum service curve ac-
cording to Lemma 3 is calculated. Together, minimum and
maximum service curve are applied to calculate the output
bound according to Lemma 1.

4. A TOY EXAMPLE FEATURING
THE DISCO NETWORK CALCULATOR

All of the algorithms and basic operations described so far
are implemented in the DISCO Network Calculator, as well
as some further features (for a complete documentation see
http://disco.informatik.uni-kl.de/content/Downloads).
In Figure 3, we provide for illustrative purposes an almost
complete code segment which utilizes the DISCO Network
Calculator Java classes to analyse a toy network scenario.
The idea of this example is to expose the usage of the DISCO
Network Calculator.

In the main() method of the DNCLibDemo class at �rst a
simple network consisting of 11 nodes is created. Note that
network topologies can also be imported if they have been
generated elsewhere as long as they adhere to the GraphML
format. In particular, we provide an export �lter for the
popular BRITE2 topology generator. Anyway, the network
topology is then transformed into an equivalent topology
where the links of the original topology, whose function is
to be modelled by service curves, are now represented by
nodes in the so-called server graph. Furthermore, we ap-
ply the turn-prohibition algorithm from [18], which is also
implemented as part of the DISCO Network Calculator.
Next, each node is assigned simple rate-latency minimum
and maximum service curves as well as each �ow from a
source to a sink is assigned a simple token bucket arrival
curve. The �ow of interest for which a network analysis shall
be performed is then chosen arbitrarily from the set of all
�ows. Before the network analyses can be performed some
�ags can be set. These are governing whether the maximum
service curves shall be used for the analysis, whether FIFO
or blind multiplexing shall be assumed, and whether the
tightened output bound from Lemma 1 shall be exploited.
Now everything is set for a comparison of di�erent ways to
analyse this simple scenario. As we also implemented the
calculation of the bounds from [5] (often called the Charny
bound) as part of the DISCO Network Calculator, we com-
pute delay and backlog bound for these �rst. Next, we pro-
vide the results for an idealised situation where it is assumed
that all servers distribute their resources fairly among the
�ows traversing them. Also this analysis method, called fair
queueing, is implemented in the DISCO Network Calculator,
mainly as a benchmark in order to compare the worst-case
analyses with an emulation of the best possible case. And
last not least, we invoke the analysis methods we presented
in Section 3: total �ow analysis, separated �ow analysis, and
PMOO analysis.

The idea of this toy example is not to discuss the results
of these analysis methods now (if the reader is interested
in playing around a little bit with this toy example, it is
provided in the DISCO Network Calculator package), but it
should demonstrate how easy it is to use the DISCO Network
Calculator. Finally, it may additionally be mentioned that a
simple class for graphically viewing piecewise-linear curves is
also provided in the DISCO Network Calculator. We found
this very helpful in combination with sampled versions of
min-plus convolution and deconvolution in order to get a
feeling for these basic min-plus algebraic operations for given
types of curves.

2http://www.cs.bu.edu/brite



Figure 3: Java Code for the Toy Example
public class DNCLibDemo {
private String filename;
private DirectedSparseGraph network_graph;
private DirectedSparseGraph server_graph;
private NetworkAnalyser na;
public DNCLibDemo(String filename) {this.filename = filename;}

public DirectedSparseGraph createDemoNetwork() {
DirectedSparseGraph network_graph = new DirectedSparseGraph();
for (int i = 0; i < 11; i++)
network_graph.addVertex(new SimpleSparseVertex());

Vertex[] vertices = (Vertex[]) network_graph.getVertices().toArray(
new Vertex[network_graph.numVertices()]);
network_graph.addEdge(new DirectedSparseEdge(vertices[0], vertices[1]));
...
// make graph bidirected
...
return network_graph;

}

public DirectedSparseGraph convert2ServerGraph(DirectedSparseGraph network_graph){
DirectedSparseGraph server_graph;
Map link_server_map = new HashMap();
Map router_turns_map = new HashMap();
server_graph = GraphUtils.createServerGraph(network_graph,

link_server_map, router_turns_map);
TurnProhibition tp = new TurnProhibition(network_graph);
tp.runTurnProhibition();
tp.removeProhibitedTurns(server_graph, link_server_map,router_turns_map);
return server_graph;

}

public static void main(String[] args) {
// create a network graph manually...
network_graph = createDemoNetwork();
// ... or by loading an existing graph, e.g. created and exported using BRITE
server_graph = convert2ServerGraph(network_graph);
// create a new network analyser instance for the server graph
na = new NetworkAnalyser(server_graph);
// create a service curve for each server
Set servers = GraphUtils.getServerSet(server_graph);
na.setServiceCurve(servers, Curve.createRateLatency(0.01, 10.0e6));
na.setMaxServiceCurve(servers, Curve.createRateLatency(0.001, 100.0e6));
// create a flow between every source-sink-pair if a path exists
DijkstraShortestPath shortest_paths = new DijkstraShortestPath(server_graph);
Curve flow_prototype = Curve.createTokenBucket(0.1 * 0.1e6, 0.1e6);
Set sources = GraphUtils.getSourceSet(server_graph);
Set sinks = GraphUtils.getSinkSet(server_graph);
for (Iterator sourceIter = sources.iterator(); sourceIter.hasNext();) {
Vertex source = (Vertex) sourceIter.next();
for (Iterator sinkIter = sinks.iterator(); sinkIter.hasNext();) {
Vertex sink = (Vertex) sinkIter.next();
List path = shortest_paths.getPath(source, sink);
if (path.size() > 0)
na.addFlow(new Flow(source, sink, flow_prototype.copy(), path));

}
}
// select the flow of interest
Flow flow_of_interest = (Flow) na.getFlows().get(0);
System.out.println("Flow of interest : " + flow_of_interest.toString());
// analyse the network
Curve beta;
Map server_bound_map;
na.setUseFifoService(false);
na.setUseGamma(false);
na.setUseExtraGamma(false);
System.out.println("--- Charny Bound ---");
System.out.println("cur. utilization: " + na.getHighestServerUtilization());
System.out.println("max. utilization: " + na.getMaxUtilizationForCharnyBound());
System.out.println("delay bound : " + na.getCharnyDelayBound());
server_bound_map = na.getCharnyBacklogBounds();
if (!server_bound_map.isEmpty()) {
System.out.println("backlog bound : " +

Collections.max(server_bound_map.values()));
System.out.println(" per server : " + server_bound_map.values().toString());

} else {
System.out.println("backlog bound : " + Double.POSITIVE_INFINITY);

}
System.out.println("--- Fair Queueing ---");
beta = na.performFairQueueingAnalysis(flow_of_interest);
System.out.println("delay bound : " +

Curve.getDelayBound(flow_of_interest.ac, beta));
System.out.println("backlog bound : " +

Curve.getBacklogBound(flow_of_interest.ac, beta));
System.out.println("--- Total Flow Analysis ---");
server_bound_map.clear();
double delay = na.performTotalFlowAnalysis(flow_of_interest, server_bound_map);
System.out.println("delay bound : " + delay);
System.out.println("backlog bound : " +

Collections.max(server_bound_map.values()));
System.out.println(" per server : " + server_bound_map.values().toString());
System.out.println("--- Separated Flow Analysis ---");
beta = na.performSeparatedFlowAnalysis(flow_of_interest);
System.out.println("delay bound : " +

Curve.getDelayBound(flow_of_interest.ac, beta));
System.out.println("backlog bound : " +

Curve.getBacklogBound(flow_of_interest.ac, beta));
System.out.println("--- PMOO Analysis ---");
beta = na.performPMOOAnalysis(flow_of_interest);
System.out.println("delay bound : " +

Curve.getDelayBound(flow_of_interest.ac, beta));
System.out.println("backlog bound : " +

Curve.getBacklogBound(flow_of_interest.ac, beta));
}

}

5. REAL-WORLD
APPLICATION EXAMPLES

After the illustrative toy example from the preceding section
we brie�y present two studies we have performed with the
help of the DISCO Network Calculator.

5.1 Performance Bounds in
Turn-Prohibited Networks

In this �rst example application of the DISCO Network Cal-
culator we compute bounds in networks of arbitrary topolo-
gies. In order to create a representative network we used
the BRITE topology generator with the following recom-
mended parameter settings: 2-level-top-down topology type
with 10 ASes with 10 routers each, Waxman's model with
α = 0.15, β = 0.2, and random node placement with incre-
mental growth type. The diameter of the generated topol-
ogy is 11 hops. Hosts are created randomly at access routers:
30% random routers in each AS get a uniform random num-
ber of hosts between 1 and 5.

This topology is then transformed into a feed-forward net-
work using the turn-prohibition algorithm. The turn-prohibition
algorithm resulted in a change of 13% of the shortest path
routes with an average change of 1.9 hops and a standard
deviation of 1.2. So, altogether the routes were changed only
by 0.25 hops on average. This can be considered a success
for the turn-prohibition algorithm, because it was able to
transform this general network with a diameter of 11 into
a feed-forward network. Thus it is now suitable to be anal-
ysed by the methods presented in Section 3 for all possible
network utilizations ≤ 1, whereas if it had been analysed as
a general network using, e.g., the bound from [5] it could
have been analysed only for utilizations below 10% (accord-
ing to Theorem 5), so we are in a much better position now
without paying a high cost in excessive route prolongation.

Now, for each source a �ow is generated towards a randomly
assigned sink. Each �ow's arrival curve is drawn from a set
Sα of candidate arrival curves. Speci�cally, for this investi-
gation we restricted the set members to token buckets. The
minimum service curves were restricted to be rate-latency
functions. These provide 1 of 3 rates: C, 2C, or 3C, where
C is chosen such that the most loaded link can carry its load
(plus a margin of 10%) and for the other links the rate is
chosen closest to their carried load. The latency is chosen to
be 10ms network-wide. If a maximum service curve is used
its latency is set to zero and its rate equal to the rate of the
corresponding nodal minimum service curve.

PMOO Analysis vs. Separated Flow Analysis
One of the goals of the more comprehensive study in [16]
was to �nd out how the separated �ow analysis and the
PMOO analysis compare to each other. We perform this
comparison for two di�erent tra�c scenarios, one with low
burstiness (Sα =

{
γr,0.05[s]r

}
, with r = 10 Mbit/s) and

the other one with signi�cantly higher burstiness (Sα ={
γr,0.05[s]r, γr,0.25[s]r, γr,0.5[s]r

}
, with r = 10 Mbit/s). Fur-

thermore, we want to isolate the e�ects by (1) the service
curve computation using the PMOO principle, (2) the out-
put bound computation using the PMOO principle, and (3)
the maximum service curve in its improved version accord-
ing to Lemma 1. We use all available sinks for �ow genera-
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Figure 4: PMOO analysis vs. separated �ow analy-
sis in turn-prohibited networks.

tion and compute 10 replications with di�erent seeds. The
results can be found in Figure 4. First we take a look at
the e�ect of the PMOO service curve alone: It is consid-
erably better than its separated �ow counterpart for both
low and high burstiness of the tra�c. As expected, the
burstier tra�c incurs higher absolute delays, but the per-
centage of improvement is roughly the same for both types
of �ows: ≈ 66±6.5% at a 95% level of con�dence. When the
PMOO output bound is used this gives a further signi�cant
improvement of ≈ 13% for the PMOO analysis (for both
tra�c types). When the maximum service curve is used
this reduces the bounds by another ≈ 16%. The maximum
service curve also improves the separated �ow analysis by
≈ 35% (low) and ≈ 45% (high) and thus keeps its promise
to be valuable for a good delay bound analysis although it
leads to more complex models.

5.2 Sensor Network Calculus
with Multiple Sinks

In this second example application we switch to the very
di�erent domain of wireless sensor networks. In [15] we have
described the basic setting regarding how to use network
calculus in sensor networks, coining the term sensor network
calculus. In this study we use the total �ow analysis because
there are several arguments why the separated �ow analysis
or PMOO analysis are not so well suited when one starts
to think of integrating the typical in-network processing in
sensor networks into the models. Yet, we do not want to
go into a detailed discussion here, the interested reader is
referred to [15]. Di�erently from the �rst application as
well, we assume FIFO instead of blind multiplexing now,
since the sensors might be assumed to be FIFO nodes.

The wireless sensor network scenario is chosen with the in-
tention of describing realistic and common application sce-
narios, yet they are certainly simplifying matters to some
degree for illustrative purposes. The goal of this study was
to show how sensor network calculus may be able to shed
some light upon how the number of sinks a�ects the worst
case message transfer delay in typical wireless sensor net-
works. The experimental setup is as follows: we assume a
�at sqare of 100x100 m2 on which the sensor nodes are ran-
domly distributed (that means their x- and y-coordinates
are chosen from a uniform random distribution over [0,100]).
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Figure 5: Worst case delay distribution for di�erent
numbers of sinks in a wireless sensor network.

Each sensor has a transmission range of 20 meters. The rout-
ing from the sensors to the sinks is done based on shortest
paths from sensors to sinks, each sensor node is associated
with its nearest sink. The sinks are randomly chosen from
the sensor nodes (which e�ectively releases them from being
sensor nodes). Initially we create 100 nodes and then desig-
nate the respective number of sinks for the given experiment.
The sensor node models we use mimic Mica-2 sensors run-
ning TinyOS. In particular we assume a duty cyle of 1%
which results in a latency of 1.096 s and a forwarding rate
of 258 b/s. Furthermore, we assume a periodic sensing task:
each sensor sends a 36 byte TinyOS packet every 30 seconds.

This scenario was readily implemented using the DISCO
Network Calculator. Some of the results of the experiments,
i.e. the worst-case delay calculation for each sensor node
based on a total �ow analysis, with di�erent number of sinks
are shown in Figure 5. Here we show for 1, 5, and 10 sinks
in the sensor �eld the worst case delay distribution over all
possible �ows of interest in the form of histograms where
each bar gives the number of �ows in intervals of duration
1 s. Note that for some �ows there may not exist a �nite
delay bound (represented by the last bar in the histograms)
since under worst case conditions the amount of incoming



tra�c of a node on the path of that �ow may be higher
than its forwarding rate. It can be clearly seen from Figure
5 how the delay distribution improves with the number of
sinks used in the sensor �eld. In fact, the average worst case
delay improves from 9.58 to 3.34 to 1.82 s for the 1, 5, and
10 sink scenario, respectively (not counting the �ows with
in�nite delay bounds for the 1 and 5 sink case, of course).
So we see how sensor network calculus may advise us to �nd
the number of sinks that we shall use in order to receive a
certain message transfer delay performance.

6. CONCLUSION
In this paper we presented a tool to facilitate network cal-
culus analyses: the DISCO Network Calculator. The basic
min-plus algebraic operations in the domain of piecewise lin-
ear arrival and service curves were discussed as they form
the basis for the operation of the toolbox. Furthermore we
presented di�erent network analysis algorithms that are con-
tained in the DISCO Network Calculator. To illustrate the
application of the tool a simple toy example was presented
as well as two example applications from real-world studies
we conducted.

From our experience, the DISCO Network Calculator has
proven to be a valuable tool for our research so that we de-
cided to make it publicly available. Thereby, we hope to
support the development of network calculus as a funda-
mental theory for the performance modelling of distributed
systems.
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