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Abstract. Network calculus has proven as a valuable and versatile methodology for worst-
case analysis of communication networks. One issue in which it is still lacking is the treatment
of aggregate multiplexing, in particular if the FIFO property cannot be assumed when �ows
are merged. In this report, we address the problem of bounding the delay of individual tra�c
�ows in feed-forward networks under arbitrary multiplexing. Somewhat surprisingly, we �nd
that direct application of network calculus results in loose bounds even in seemingly simple
scenarios. The reasons for this �failure� of network calculus are discussed in detail and a method
to arrive at tight delay bounds for arbitrary (aggregate) multiplexing is presented. This method
is based on the solution of an optimization problem. For the special case of sink-tree networks
this optimization problem is solved explicitly, thus arriving at a closed-form expression for the
delay bound. Numerical experiments illustrate that in sink-tree networks the improvement over
bounds based on direct application of network calculus can be considerable.
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1 Introduction

Network calculus is a min-plus system theory for deterministic queuing systems which builds on
the calculus for network delay in [1], [2]. The important concept of service curve was introduced in
[3,4,5,6,7]. The service curve based approach facilitates the e�cient analysis of tandem queues where
a linear scaling of performance bounds in the number of traversed queues is achieved as elaborated in
[8] and also referred to as pay bursts only once phenomenon in [9]. A detailed treatment of min-plus
algebra and of network calculus can be found in [10] and [9], [11], respectively.

Network calculus has found numerous applications, most prominently in the Internet's Quality of
Service (QoS) proposals IntServ and Di�Serv, but also in other scenarios as, for example, wireless
sensor networks [12,13], switched Ethernets [14], Systems-on-Chip (SoC) [15], or even to speed-up
simulations [16]. Hence, besides queueing theory it has established as a valuable methodology.

However, as a relatively young theory, compared to e.g. traditional queueing theory, there is also
a number of challenges network calculus still has to master. To name a few: recently there has been
much interest and progress with respect to stochastic extensions (see [8], [17], [18] for recent advances);
tool support for network calculus has been addressed by [19], [20] and brings about new interesting
perspectives. A very tough challenge is also found in the treatment of non-tandem topologies with
aggregate multiplexing of multiple �ows. While this has been addressed from the beginning [2], there
are still many open issues. For aggregate multiplexing in general network topologies there is a very
fundamental issue about the circumstances under which a �nite delay bound exists at all [21], [22]. In
[23] a su�cient condition for stability in general network topologies and an explicit delay bound are
given. Extensions of this approach are provided by [24] and [25]. Yet, for larger networks this puts a
heavy constraint on the utilization of the network since the maximum allowable utilization is inversely
proportional to the network diameter. The problems in the analysis of general topologies arise due to
cyclic dependencies between �ows and the consequent di�culties in bounding their network-internal
burstiness. A special class of topologies which avoids those problems are feed-forward networks, which
are known to be stable for all utilizations≤1 [2]. In this report, we focus on this class of networks. While
many networks are obviously not feed-forward, many important instances like switched networks,
wireless sensor networks, or MPLS networks with multipoint-to-point label switched paths are, or can
be made feed-forward by using, e.g., the turn-prohibition algorithm [26].

In feed-forward networks, there has been some work on aggregate multiplexing recently: [27] treats
the case of feed-forward networks under FIFO multiplexing for token-bucket constrained �ows and
rate-latency servers. The left-over service curve for a �ow of interest is derived. It is again of the
rate-latency type with minimally possible latency. [28] shows that this does not result in a tight delay
bound, and derives tight delay bounds under knowledge about the arrival curve of the �ow of interest
for the special case of sink-trees and, again, under token bucket constrained �ows and rate-latency
servers. Another work [29] also investigates sink-tree networks, but now under dual token-bucket
constrained �ows and constant rate servers, for which delay bounds are derived by summing per-node
bounds, expectedly not arriving at tight bounds but reported as being at least close under practical
conditions.

Besides being very speci�c with respect to tra�c and server models, all of the above work assumes
FIFO aggregate multiplexing. However in practice, as argued in [30], many devices cannot be accu-
rately described by FIFO because packets arriving at the output queue from di�erent input ports
may experience di�erent delays when traversing a node. This is due to the fact that many networking
devices like routers are implemented using input-output bu�ered crossbars and/or multistage inter-
connections between input and output ports. Hence, packet reordering on the aggregate level is a
frequent event (not so on the �ow level) and should not be neglected in modelling. Therefore, in this
work we drop the FIFO multiplexing assumption and make essentially no assumptions on the way
aggregates are multiplexed at servers, i.e. we assume arbitrary multiplexing a.k.a general or blind
multiplexing [1], [9]. On the level of a single �ow, however, we still assume FIFO. This assumption is
sometimes called FIFO-per-micro�ow [31] or locally FCFS multiplexing [1].

There is actually little work on arbitrary multiplexing: Some results are reported in [9] (see Section
2), and there is some work on the burstiness increase due to arbitrary multiplexing at a single node [32].
In previous work [19] related to network calculus tool support, we have proposed and implemented a
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number of network calculus analysis methods for arbitrary multiplexing feed-forward networks. Some
of these are presented in Section 3, but as will be demonstrated, they were not the ��nal word on this
topic�. While not addressing aggregate multiplexing, we also mention [31] here, because it demonstrates
that releasing FIFO assumptions can lead to interesting and somewhat unexpected phenomena, similar
to what we will be dealing with later on.

The goal of our work is to calculate tight delay bounds in feed-forward networks of arbitrary
multiplexers. With respect to tra�c and server models we address a more general case than previous
work on FIFO multiplexing, in particular we assume piecewise linear concave arrival curves and convex
service curves, which encompass the majority of practical tra�c and server models.

In essence, the main contributions of this report are

� exposition of a fundamental problem of network calculus to achieve tight delay bounds in any
non-FIFO aggregate multiplexing (→Section 3);

� a novel method to achieve tight delay bounds in feed-forward networks under arbitrary multiplex-
ing (→Section 4);

� closed-form expressions for tight delay bounds in sink-tree networks (→Section 5).

2 Network Calculus Basics

As network calculus is built around the notion of cumulative functions for input and output �ows
of data, the set of real-valued, non-negative, and wide-sense increasing functions passing through the
origin plays a major role:

F = {f : R+ → R+, ∀t ≥ s : f(t) ≥ f(s), f(0) = 0}

In particular, the input function F (t) and the output function F ′(t), which cumulatively count the
number of bits that are input to, respectively output from, a system S, are in F . Throughout the
report, we assume in- and output functions to be continuous in time and space. Note that this is not
a general limitation as there exist transformations between discrete and continuous time models [9].

De�nition 1. (Min-plus Convolution and Deconvolution) The min-plus convolution respectively de-
convolution of two functions f and g are de�ned to be

(f ⊗ g) (t) = inf
0≤s≤t

{f(t− s) + g(s)}

(f ® g) (t) = sup
u≥0

{f(t + u)− g(u)}

It can be shown that the triple (F ,∧,⊗), where ∧ denotes the minimum operator (which ought to
be taken pointwise for functions), constitutes a dioid [9]. Also, the min-plus convolution is a linear
operator on the dioid (R ∪ {+∞},∧, +), whereas the min-plus deconvolution is not. These algebraic
characteristics result in a number of rules that apply to those operators, many of which can be found
in [9], [11]. Let us now turn to the performance characteristics of �ows which can be bounded by
network calculus means:

De�nition 2. (Backlog and Delay) Assume a �ow with input function F that traverses a system S
resulting in the output function F ′. The backlog of the �ow at time t is de�ned as

x(t) = F (t)− F ′(t)

Assuming FIFO delivery, the virtual delay for a bit input at time t is de�ned as

d(t) = inf {τ ≥ 0 : F (t) ≤ F ′(t + τ)}

Next, the arrival and departure processes speci�ed by input and output functions are bounded based
on the central network calculus concepts of arrival and service curves:
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De�nition 3. (Arrival Curve) Given a �ow with input function F a function α ∈ F is an arrival
curve for F i�

∀t, s ≥ 0, s ≤ t : F (t)− F (t− s) ≤ α(s) ⇔ F ≤ F ⊗ α

A typical example of an arrival curve is given by an a�ne arrival curve γr,b (t) = b + rt, t > 0 and
γr,b (t) = 0, t ≤ 0 which corresponds to token-bucket tra�c regulation.

De�nition 4. (Service Curve) If the service provided by a system S for a given input function F
results in an output function F ′ we say that S o�ers a service curve β i�

F ′ ≥ F ⊗ β

A typical example of a service curve is given by a so-called rate-latency function βR,T (t) = R [t− T ]+,
where the [.]+operator is de�ned as [x]+ = x ∨ 0, and ∨ denotes the maximum operator. A number
of systems ful�ll, however, a stricter de�nition of service curve [9], which is particularly useful as
it permits certain derivations that are not feasible under the more general minimum service curve
model.

De�nition 5. (Strict Service Curve) Let β ∈ F . System S o�ers a strict service curve β to a �ow
if, during any backlogged period of duration u the output of the �ow is at least equal to β(u).

Note that any strict service curve is also a service curve, but not the other way around. Many schedulers
o�er strict service curves, for example most of the generalized processor sharing-emulating schedulers
o�er a strict service curve of the rate-latency type. Strict service curves will play a crucial role in this
report, since they, in contrast to service curves, allow to bound the maximum backlogged period of
a system. More speci�cally, that bound d̄ is given as the non-zero intersection point between arrival
and service curve, i.e. α

(
d̄
)

= β
(
d̄
)
.

Using those concepts it is possible to derive tight performance bounds on backlog, (virtual) delay
and output:

Theorem 1. (Performance Bounds) Consider a system S that o�ers a service curve β. Assume a
�ow F traversing the system has an arrival curve α. Then we obtain the following performance bounds:
Backlog: ∀t : x(t) ≤ (α® β) (0) =: v(α, β)
Delay: ∀t : d(t) ≤ inf {t ≥ 0 : (α® β) (−t) ≤ 0} =: h (α, β)
Output (arrival curve α′ for F ′): α′ =α® β

Note that, if FIFO cannot be assumed, the bound on the maximum backlogged period under the
assumption of a strict service curve can be used as an alternative delay bound instead of the horizontal
deviation h (α, β).

One of the strongest results of network calculus (albeit being a simple consequence of the associa-
tivity of ⊗) is the concatenation theorem that enables us to investigate tandems of systems as if they
were single systems:

Theorem 2. (Concatenation Theorem for Tandem Systems) Consider a �ow that traverses a tandem
of systems S1 and S2. Assume that Si o�ers a service curve βi, i = 1, 2 to the �ow. Then the
concatenation of the two systems o�ers a service curve β1 ⊗ β2 to the �ow.

Using the concatenation theorem, it is ensured that an end-to-end analysis of a tandem of servers
still achieves tight performance bounds, which in general is not the case for an iterative per-node
application of Theorem 1.

So far we have only covered the single �ow case, the next result factors in the existence of other
interfering �ows. In particular, it states the minimum service curve available to a �ow at a single node
under cross-tra�c from other �ows at that node.

Theorem 3. (Left-over Service Curve under Arbitrary Multiplexing) Consider a node multiplexing
two �ows 1 and 2 in arbitrary order. Assume that the node guarantees a strict minimum service curve
β to the aggregate of the two �ows. Assume that �ow 2 has α2 as an arrival curve. Then

β1 = [β − α2]
+
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is a service curve for �ow 1 if β1 ∈ F , often also called the left-over service curve for the �ow of
interest. Note that we require the service curve to be strict. In [9], an example is given showing that
the theorem otherwise would not hold.

3 Network Calculus in Feed-Forward Networks
In this section, several methods of computing delay bounds in feed-forward networks of arbitrary
multiplexers are presented. All of them are based on the direct application of well-known network
calculus results.

3.1 Network Calculus Based Bounding Methods
The methods we present in the following compute delay bounds for a certain �ow of interest. In
order to do so all of them require to compute the network-internal �ow constraints of each �ow
that is interfering with the �ow of interest. This can be easily done in a feed-forward network by
the application of the output bound from Theorem 1 and noting that the multiplexing of �ows is
performed by their addition.

For ease of exposition we now present the di�erent alternatives in probably the most simple
conceivable example scenario as illustrated in Figure 1. Despite its simplicity this scenario will already
exhibit that any of the presented network calculus based methods runs into problems with respect to
achieving tight delay bounds.

Total Flow Analysis (TFA) The �rst bounding method is probably the most direct application of
basic network calculus results and is already mentioned in [2] to show that feed-forward networks are
stable. The idea of this method is to compute per-node delay bounds for the total tra�c o�ered to
the respective node, which is why it has been called total �ow analysis (TFA), and then sum those up
for the end-to-end delay bound of the �ow of interest. Under the assumption of arbitrary multiplexing
this means the per-node delay bounds have to be computed as the maximum busy periods at the
nodes because the total �ow must be considered to be non-FIFO.

For the example scenario in Figure 1, the TFA delay bound for �ow 1 can be computed as follows

dTFA = d1 + d2 with

(α1 + α2) (d1) = β1 (d1) , ((α1 + α2)® β1) (d2) = β2 (d2)

Separated Flow Analysis (SFA) An obvious weakness of the TFA is that it makes no use of the
concatenation theorem, which is known to provide a clear advantage over additive per-node bounds.
To this end, instead of treating the total �ow, the next method �rst separates the service provided
to the �ow of interest at each node, which is why it is called separated �ow analysis (SFA), before
applying the concatenation theorem to the tandem of left-over service curves. The separation is based
on Theorem 3 for the left-over service at a single node under arbitrary multiplexing. Note that in
contrast to the TFA, the horizontal deviation can be used for the calculation of the end-to-end delay
bound because each �ow is assumed to be served in FIFO order (FIFO-per-micro�ow).

For the example scenario in Figure 1, the SFA delay bound for �ow 1 can be computed as follows

d
SF A

= h
(
α1, [β1 − α2]

+ ⊗ [β2 − (α2 ® β1)]
+
)

(1)

Fig. 1. Simple two nodes, two �ows scenario.
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TFA vs. SFA In comparison between TFA and SFA, SFA is a clear winner due to the application of
the concatenation theorem. Let us illustrate this fact by setting αi = γri,bi

and βi = βRi,Ti
for i = 1, 2

in the example scenario of Figure 1. We obtain the following delay bounds

dTFA = T1 + T2 + b1+b2+(r1+r2)T1
R1−r1−r2

+ b1+b2+(r1+r2)(T1+T2)
R2−r1−r2

dSFA = T1 + T2 + b1
(R1∧R2)−r2

+ b2+r2T1
R1−r2

+ b2+r2(T1+T2)
R2−r2

It can be easily checked that d
T F A ≥ d

SF A is always true and thus the use of SFA is strictly
superior to TFA. However, taking a closer look at Equation (1) it becomes clear that d

SF A cannot
be a tight delay bound since the service at node 1 would be required to be lazy and in�nitely fast
after the latency at the same time, which can obviously not be the case for any sample path of the
system. This observation is also exhibited in the fact that the burst term b2 appears twice in d

SF A , i.e.
multiplexing with the interfering �ow is paid twice. However, the �ow of interest cannot be overtaken
by the interfering �ow's burst twice.

Pay Multiplexing Only Once SFA (PMOO-SFA) A problem with the SFA is the order in
which it applies the arbitrary multiplexing theorem and the min-plus convolution. In fact, there is
some choice: in the example scenario from Figure 1, we could also �rst take the convolution of the
two nodal service curves and afterwards apply the arbitrary multiplexing to the resulting single node
system. In general, the idea is to concatenate single systems �rst, in order to be able to pay for the
multiplexing with interfering �ows only once, which is why this method is called pay multiplexing only
once SFA (PMOO-SFA).

Speci�cally in the example scenario from Figure 1, a delay bound can be calculated as

dPMOO = h
(
α1, [(β1 ⊗ β2 − α2)]

+
)

Instantiating αi = γri,bi and βi = βRi,Ti for i = 1, 2 in the example scenario, we obtain

dPMOO = T1 + T2 + b1+b2+r2(T1+T2)
(R1∧R2)−r2

(2)

So, as can be observed, based on a clever application order of convolution and the arbitrary
multiplexing result, the multiplexing with �ow 2 is paid only once (b2 appears only once). Actually,
d

P MOO has an intuitive form, with the sum of the nodal latencies and each burst term as well as the
burstiness increases at each of the nodes paid at the minimum residual rate of the nodes. So, PMOO-
SFA seems to constitute a nice application of the basic network calculus results. In fact, we provided
a generalization of this method in [19], where the main issue is dealing with overlapping interference
scenarios as depicted for the canonical example in Figure 2 (on page 7).

3.2 Network Calculus Crisis: Convolution Considered Harmful

So far, everything seems to turn out well. However, taking a closer look at the delay bounds for
the example scenario for SFA and PMOO-SFA reveals a startling phenomenon: SFA can outperform
PMOO-SFA! In particular, let b2 = 0, T1 = 0 then we obtain

dSFA = T2 + b1
(R1∧R2)−r2

+ r2T2
R2−r2

dPMOO = T2 + b1+r2T2
(R1∧R2)−r2

which means that the di�erence

dPMOO − dSFA = r2T2

(
1

(R1∧R2)−r2
− 1

R2−r2

)
≥ 0,
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i.e. the improvement of SFA over PMOO-SFA, in this special case, can be made arbitrarily large by
e.g. increasing the rate at the second server R2. While it is only a special case and in many cases the
PMOO-SFA is superior to the SFA (set for example T2 = 0 and the PMOO-SFA always outperforms
the SFA), it nevertheless shows that the PMOO-SFA cannot give a tight delay bound in all scenarios.
So the question is what goes wrong here, why can we not �nd a tight bound for this simple scenario
by the application of basic network calculus results?

With the SFA, it is clear as discussed above that it does not give a tight bound because it does
not correspond to a realizable sample path of the system. Yet, the PMOO-SFA seems like a perfect
application of network calculus. In fact, we encounter in this seemingly simple and innocent looking
scenario a case where the application of the min-plus convolution is detrimental with respect to
�nding tight bounds. This can be explained physically when carefully examining the PMOO-SFA
delay bound in Equation (2): the burstiness increase of �ow 2 due to the latency of node 2, r2T2, is
paid at the minimum of the residual rates of node 1 and 2. However, that burstiness increase can only
be experienced at node 2 and never at node 1, so the PMOO-SFA delay bound cannot capture this
physical reality. The convolution e�ectively �swallows� the topological information that the burstiness
increase due to node 2 can only be paid at node 2 (or subsequent nodes in larger scenarios), but not
at node 1. The min-plus convolution necessarily is blind for such topological details because it is by
de�nition commutative and thus the order of nodes cannot matter to it when concatenating them.

In this simple example, a very fundamental problem with the direct application of basic network
calculus results is exhibited, because the algebraic structure of network calculus being a dioid breaks
down here since commutativity is lost. Any aggregate multiplexing that is non-FIFO, even if more
knowledge than the arbitrary multiplexing assumption is given, runs into this problem and can thus
not be dealt with in the conventional framework of network calculus. The physical reason for this is
the following: Without FIFO, there is the possibility at any given node that data from interfering
�ows which the �ow of interest has not yet encountered on previous nodes will overtake the �ow of
interest, and will thus result in a burstiness increase of the interfering tra�c. This burstiness increase
must be accounted for at servers downstream starting from the point where it overtook the �ow of
interest but not on servers upstream from this point.

4 Optimization-Based Bounding Method

In this section, we present an alternative method to compute delay bounds in feed-forward networks
of arbitrary multiplexing nodes. This method consists of formulating an optimization problem based
on the knowledge about arrival constraints of interfering tra�c �ows and service guarantees provided
by each node. Since the formulation of the general feed-forward network case is notationally heavy,
we �rst present the method for the canonical example of overlapping interference displayed in Figure
2. In fact, this example captures all of the main di�culties for the application of the optimization-
based bounding method. The optimization problem is set up under general arrival and strict service
curves and solved for the case of token-bucket constrained �ows and rate-latency servers. Next we
demonstrate that the solution to the optimization problem arrives at a tight bound by providing a
sample path in which the delay bound is actually experienced. After that, the general feed-forward
network case is discussed. At the end of this section, we prove a result on how to compute a left-over

Fig. 2. Overlapping interference scenario.
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service curve under piece-wise linear concave arrival and convex service curves, a very relevant case
in practice.

4.1 The Case of Overlapping Interference
Let us assume the canonical example scenario of overlapping interference from Figure 2 with the
respective denotations. Furthermore, assume that the nodes provide strict service curves βk, k = 1, 2, 3.

Assume 0 ≤ t0 ≤ t1 ≤ t2 ≤ t3 such that tk−1 is the start of the last backlogged period at node k
before tk. From the strict service curve property at each of the nodes it is ensured that for k = 1, 2, 3

F (k) (tk)− F (k−1) (tk−1) ≥ βk (tk − tk−1)

where F (k) denotes the total �ow entering node k + 1. Due to the wide-sense increasing nature of
the input and output functions and since F

(k)
i (tk) ≥ F

(k)
i (tk−1) = F

(k−1)
i (tk−1) for the selected tk

such that F
(k)
i (tk)− F

(k−1)
i (tk−1) ≥ 0 this can be rewritten as

F
(3)
1 (t3)− F

(2)
1 (t2)≥

[
β3 (t3 − t2)−

(
F

(3)
3 (t3)− F

(2)
3 (t2)

)]+

F
(2)
1 (t2)− F

(1)
1 (t1)≥

[
β2 (t2 − t1)−

(
F

(2)
3 (t2)− F

(1)
3 (t1)

)
−

(
F

(2)
2 (t2)− F

(1)
2 (t1)

)]+

F
(1)
1 (t1)− F

(0)
1 (t0) ≥

[
β1 (t1 − t0)−

(
F

(1)
2 (t1)− F

(0)
2 (t0)

)]+

These can be added up so that

F
(3)
1 (t3)− F

(0)
1 (t0)

≥
[
β3 (t3 − t2)−

(
F

(3)
3 (t3)− F

(2)
3 (t2)

)]+

+
[
β2 (t2 − t1)−

(
F

(2)
3 (t2)− F

(1)
3 (t1)

)
−

(
F

(2)
2 (t2)− F

(1)
2 (t1)

)]+

+
[
β1 (t1 − t0)−

(
F

(1)
2 (t1)− F

(0)
2 (t0)

)]+

From the arrival constraints we know that

F
(1)
2 (t1)− F

(0)
2 (t0) ≤ F

(0)
2 (t1)− F

(0)
2 (t0)≤ α2 (t1 − t0)

F
(2)
2 (t2)− F

(0)
2 (t0) ≤ F

(0)
2 (t2)− F

(0)
2 (t0)≤ α2 (t2 − t0)

F
(2)
3 (t2)− F

(1)
3 (t1) ≤ F

(1)
3 (t2)− F

(1)
3 (t1) ≤ α3 (t2 − t1)

F
(3)
3 (t3)− F

(1)
3 (t1) ≤ F

(1)
3 (t3)− F

(1)
3 (t1)≤ α3 (t3 − t1)

Now comes an important step: we introduce slack variables in order to rewrite the previous in-
equations as

F
(1)
2 (t1)− F

(0)
2 (t0) = α2 (t1 − t0)− s

(1)
2 , s

(1)
2 ≥ 0

F
(2)
2 (t2)− F

(1)
2 (t1) ≤ α2 (t2 − t0)− α2 (t1 − t0) + s

(1)
2

F
(2)
3 (t2)− F

(1)
3 (t1) = α3 (t2 − t1)− s

(2)
3 , s

(2)
3 ≥ 0

F
(3)
3 (t3)− F

(2)
3 (t2) ≤ α3 (t3 − t1)− α3 (t2 − t1) + s

(2)
3

The slack variables s
(k)
i have the following interpretation: they account for how much of the accu-

mulated burstiness of the respective �ow i is transferred from node k to the next node. As such they
will be the decision variables for the optimization problem to be solved, because the whole bounding
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problem is about where each �ow's burstiness is to be paid. Next, we need to also bound the slack
variables from above with the help of the service curve guarantees. In particular we know for �ow 2
that

α2 (t1 − t0)− s
(1)
2 = F

(1)
2 (t1)− F

(0)
2 (t0) ≥ β1 (t1 − t0)

from which follows that

s
(1)
2 ≤ α2 (t1 − t0)− β1 (t1 − t0)

≤ sup
t1−t0≥0

{α2 (t1 − t0)− β1 (t1 − t0)} =: B
(1)
2

With �ow 3 the argument is a bit more complex, we know

α3 (t2 − t1)− s
(2)
3 = F

(2)
3 (t2)− F

(1)
3 (t1)

≥
[
β2 (t2 − t1)−

(
F

(2)
2 (t2)− F

(1)
2 (t1)

)]+

≥
[
β2 (t2 − t1)−

(
α2 (t2 − t0)− α2 (t1 − t0) + s

(1)
2

)]+

such that

s
(2)
3 ≤ α3 (t2 − t1)−

[
β2 (t2 − t1)−

(
α2 (t2 − t0)− α2 (t1 − t0) + s

(1)
2

)]+

≤ sup
t2−t1≥0

{
α3 (t2 − t1)−

[
β2 (t2 − t1)−

(
α2 (t2 − t0)− α2 (t1 − t0) + s

(1)
2

)]+
}

=: B
(2)
3

Here it is important to realize that we give strict priority to �ow 2 over �ow 3. This is due to the
observation that doing so makes �ow 3 as bursty as possible and since it still accompanies the �ow
of interest on node 3 whereas �ow 2 leaves after node 2 this constitutes the worst case for the �ow
of interest. This observation is true in general and thus the scheduling among interfering �ows is to
always give priority to those �ows that leave the �ow of interest soonest.

Taking it all together and using the following two logical conditions, C1 = (0 ≤ t0 ≤ t1 ≤ t2 ≤ t3)
and C2 =

(
0 ≤ s

(1)
2 ≤ B

(1)
2 , 0 ≤ s

(2)
3 ≤ B

(2)
3

)
, we arrive at

F
(3)
1 (t3)− F

(0)
1 (t0) ≥ β1 (t3 − t0)

= inf
C1, C2

{[
β3 (t3 − t2)−

(
α3 (t3 − t1)− α3 (t2 − t1) + s

(2)
3

)]+

+
[
β2 (t2 − t1)−

(
α3 (t2 − t1)− s

(2)
3

)
−

(
α2 (t2 − t0)− α2 (t1 − t0) + s

(1)
2

)]+

+
[
β1 (t1 − t0)−

(
α2 (t1 − t0)− s

(1)
2

)]+
}

Thus we have to solve a constrained optimization problem in order to �nd the left-over service
curve of �ow 1 with which we can then compute the delay bound according to Theorem 1 in the
conventional manner. The optimization problem cannot be solved in the general setting assumed so
far. When setting βi = βRi,Ti and αi = γri,bi , i = 1, 2, 3, we can proceed as follows:

B
(1)
2 = b2 + r2T1, B

(2)
3 = b3 + r3

(
T2 + s

(1)
2 +r2T2

R2−r2

)

β1 (t3 − t0)

= inf
C1, C2

{[
R3 [t3 − t2 − T3]

+ −
(
r3 (t3 − t2) + s

(2)
3

)]+

+
[
R2 [t2 − t1 − T2]

+ −
(
b3 + r3 (t2 − t1)− s

(2)
3

)
−

(
r2 (t2 − t1) + s

(1)
2

)]+

+
[
R1 [t1 − t0 − T1]

+ −
(
b2 + r2 (t1 − t0)− s

(1)
2

)]+
}
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≥ inf
C1, C2

{
(R3 − r3)

[
t3 − t2 − T3 − r3T3+s

(2)
3

R3−r3

]+

+(R2 − r2 − r3)
[
t2 − t1 − T2 − b3+(r2+r3)T2−s

(2)
3 +s

(1)
2

R2−r2−r3

]+

+(R1 − r2)
[
t1 − t0 − T1 − b2+r2T1−s

(1)
2

R1−r2

]+
}

= ((R1 − r2) ∧ (R2 − r2 − r3) ∧ (R3 − r3))×
inf
C2

{[
t3 − t0 − (T1 + T2 + T3)− r3T3+s

(2)
3

R3−r3
− b3+(r2+r3)T2−s

(2)
3 +s

(1)
2

R2−r2−r3
− b2+r2T1−s

(1)
2

R1−r2

]+
}

Hence, to �nd a closed form for the left-over service curve is equivalent to solving the following
optimization problem:

min.
(

1
R1−r2

− 1
R2−r2−r3

)
s
(1)
2 +

(
1

R2−r2−r3
− 1

R3−r3

)
s
(2)
3

s.t. 0 ≤ s
(1)
2 ≤ b2 + r2T1

0 ≤ s
(2)
3 ≤ b3 + r3

(
T2 + s

(1)
2 +r2T2

R2−r2

)

This constitutes a simple linear program that can be solved easily when the parameters are given.
The general solution of this problem depends on the relations between the residual rates at the nodes.
With A := 1

R1−r2
− 1

R2−r2−r3
, B := 1

R2−r2−r3
− 1

R3−r3
, and C := r3

R2−r2
the solution vector for the

slack variables
(
s
(1)
2 , s

(2)
3

)
is obtained as

A ≤ 0, B > 0 : (b2 + r2T2, 0)
A ≤ 0, B ≤ 0 :

(
b2 + r2T1, b3 + r3

(
T2 + b2+r2T1+r2T2

R2−r2

))

A > 0, B > 0 : (0, 0)
A > 0, B ≤ 0,

CB ≤ A
:
(
0, b3 + r3

(
T2 + r2T2

R2−r2

))

A > 0, B ≤ 0,
CB > A

:
(
b2 + r2T1, b3 + r3

(
T2 + b2+r2T1+r2T2

R2−r2

))

From this the left-over (l.o.) service curve for �ow 1 can be given. We state it for the last case
(A > 0, B ≤ 0, CB > A):

β1 = βRl.o.,T l.o. (3)
with

Rl.o. = (R1 − r2) ∧ (R2 − r2 − r3) ∧ (R3 − r3)

T l.o. = T1 + T2 + T3 + b3+r3(T2+T3)
R3−r3

+ b2+r2(T1+T2)
R2−r2−r3

+
(R2−r2−R3)r3

b2+r2(T1+T2)
R2−r2

(R2−r2−r3)(R3−r3)

This case corresponds to a situation where R1−r2 < R2−r2−r3 (A > 0) and R2−r2−r3 ≥ R3−r3

(B ≤ 0) and r2 > (R2−R1)R3
R2−r2

(CB > A). It is interesting because it constitutes a case where the burst
of �ow 2 is not paid at node 1, although node 1's residual service is slower than that for node 2.
Instead it is paid at node 2, because its e�ect of increasing the burstiness of �ow 3, which is then paid
at node 3, is stronger than if it had been paid at node 1. This shows that for some scenarios the delay
bound can depend on fairly contrived conditions on the parameters of the scenario.

Setting F3 = 0 and β3 = +∞ in the overlapping interference scenario results in the simple example
scenario from Section 3. Here, the left-over service curve for �ow 1 and the corresponding delay bound
are

β1 = β
(R1∧R2)−r2,T1+T2+

b2+r2T1
(R1∧R2)−r2

+
r2T2

R2−r2

10



dOPT = h
(
α1, β

1
)

= T1 + T2 + b1+b2+r2T1
(R1∧R2)−r2

+ r2T2
R2−r2

The burstiness increase due to node 2 (r2T2) is now correctly accounted for at node 2 instead of
node 1 as for the PMOO-SFA. At the same time the burst terms are only accounted for once, thus
the PMOO gain is still retained.

4.2 Tightness of Delay Bound
Using the optimization-based method to �nd the left-over service curve for a �ow of interest actually
achieves a tight delay bound. Let us illustrate this for the interesting case treated in the previous
subsection (A > 0, B ≤ 0, CB > A). The other cases can be treated similarly, but are simpler.
Assume the left-over service curve in Equation (3) is tight, i.e. it is the largest service curve (for all
interval lengths) that can be given to the �ow of interest. Then the delay bound can be easily seen to
be tight from the tightness of the delay bound in a simple single node system as mentioned in Section
2 for Theorem 1. Hence, it has to be shown that the left-over service curve in Equation (3) is tight.
First we show the tightness of the latency, i.e. there is actually a sample path such that the system
o�ers no service to the �ow of interest for the duration of the latency:

We track a speci�c bit of �ow 1 (the �ow of interest), called the bit-under-observation (b-u-o),
which arrives at node 1 at time t0, and create a worst-case sample path for the time until this bit
leaves node 3. This constitutes the latency for the �ow of interest.

All interfering �ows are assumed to be constantly claiming their sustained rates ri, however when
they burst will be detailed below. Similarly, when the servers take their latencies is given below. Note
that not all the servers are lazy, i.e. some provide more than their service curves ensure (see 2) below).
In fact, otherwise the worst-case sample path with respect to the latency would not be attained.
1. At time t0: node 1 takes its latency T1; �ow 2 bursts.
2. At time t1 = t0 + T1: node 1 starts serving in�nitely fast, thus the backlog of �ow 2, b2 + r2T1,

and the b-u-o are passed on to node 2; node 2 immediately takes its latency; �ow 3 bursts.
3. At time t2 = t1 + T2: node 2 starts serving �ow 2 at the minimal rate R2 with strict priority over

�ow 3; �ow 2 has a backlog at node 2 of x
(2)
2 (t2) = b2 + r2 (T1 + T2).

4. At time t3 = t2 + x
(2)
2 (t2)

R2−r2
: �ow 3 starts to be served by node 2 with strict priority over �ow 1; �ow

3 has a backlog at node 2 of x
(2)
3 (t3) = b3 + r3T2 + r3

x
(2)
2 (t2)

R2−r2
; at the same time bits from �ow 2

arrive at rate r2 and are still served with priority over �ow 3, hence reducing the service rate for
�ow 3 to R2 − r2.

5. At time t4 = t3 + x
(2)
3 (t3)

R2−r2−r3
: the b-u-o leaves node 2 and is passed on to node 3; node 3 takes its

latency; �ow 3 has a backlog at node 3 of x
(3)
3 (t4) = (R2 − r2 −R3)

x
(2)
3 (t3)

R2−r2−r3
. Note that B ≤ 0

implies R2 − r2 ≥ R3 and thus a backlog for �ow 3 builds up at node 3.
6. At time t5 = t4 + T3: �ow 3 is continued to be served by node 3 with strict priority over �ow 1;

�ow 3 has a backlog of x
(3)
3 (t5) = r3T3 + x

(3)
3 (t4).

7. At time t6 = t5 + x
(3)
3 (t5)

R3−r3
: the b-u-o leaves node 3.

This sample path is also illustrated in Figure 3. The latency for the b-u-o can thus be computed as

t6 − t0 = T1 + T2 + T3 + b2+r2(T1+T2)
R2−r2

+
b3+r3T2+r3

b2+r2(T1+T2)
R2−r2

R2−r2−r3
+

r3T3+(R2−r2−R3)
b3+r3T2+r3

b2+r2(T1+T2)
R2−r2

R2−r2−r3
R3−r3

This expression can be checked to be equal to T l.o. and thus the latency of the left-over service
curve is shown to be tight because it is attained for the above described sample path.

For a time interval longer than the latency, t > T l.o., the service curve can be seen to be tight by
considering the following sample path: During a period of length t−T l.o. each interfering �ow creates
tra�c according to its sustained rate. This is followed by a period of length T l.o. for which the sample
path is the one described above to illustrate the tightness of the latency. Note that it is important to
take the outage time of the service for the �ow of interest (the latency of the left-over service curve)
at the end of the interval. Otherwise, if for example the last server is not the bottleneck server, this
server could play out bu�ered data faster than at the minimum residual rate over all nodes, resulting
in a seemingly larger service curve. Yet, this would not constitute the worst-case sample path.
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Fig. 3. Worst-case sample path illustration.

4.3 General Feed-forward Networks
In this subsection, the extension of the optimization-based bounding method to general feed-forward
networks is discussed. We essentially follow the same steps as for the overlapping interference scenario
in Section 4.1.

A general feed-forward network scenario looks like Figure 4 from the perspective of the �ow of
interest. So there are potentially n

2 (n + 1) interfering �ows, one for each possible joining node i and
leaving node j, denoted by F

(k)
i,j , k = i − 1, ..., j, where the upper index denotes the node where the

�ow is coming from (for a newly joining �ow at node i it is set to i− 1, for ease of generalization). In
the following we assume all n

2 (n + 1) possible interfering �ows to exist, if that is not the case we can
simply set those that are missing to 0.

The �ow of interest is denoted by F
(k)
int , k = 0, ..., n. Assume t0 ≤ t1 ≤ t2 ≤ ... ≤ tn, such that ti−1

is the start of the last backlogged period at node i before ti. Due to the strict service curve property at
each of the nodes and following the same arguments about the wide-sense increasing nature of input
and output functions as well as the choice of the selected ti, we obtain the following for the �ow of
interest

F
(n)
int (tn)− F

(0)
int (t0) ≥

n∑

k=1


βk (tk − tk−1)−

∑

l,m:l≤k≤m

(
F

(k)
l,m (tk)− F

(k−1)
l,m (tk−1)

)



+

From the causality of the system and the arrival constraints for each of the interfering �ows F
(k)
i,j

we know that for k : i ≤ k ≤ j

F
(k)
i,j (tk)− F

(i−1)
i,j (ti−1) ≤ F

(i−1)
i,j (tk)− F

(i−1)
i,j (ti−1) ≤ αi,j (tk − ti−1)

Introducing again slack variables for each interfering �ow and each of its traversed nodes, s
(k)
i,j ≥ 0,

these inequations can be rewritten as (for i, j : 1 ≤ i ≤ j ≤ n, k : i− 1 ≤ k ≤ j)

F
(k)
i,j (tk)− F

(k−1)
i,j (tk−1) = αi,j (tk − ti−1)−

(
αi,j (tk−1 − ti−1)− s

(k−1)
i,j

)
− s

(k)
i,j (4)

Fig. 4. General feed-forward network scenario.
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To be correct, note that for k = j, the equation sign must be replaced by ≥. Further note that we
set s

(j)
i,j := 0 and s

(i−1)
i,j := αi,j (0) .

Next the upper bound on the slack variables is derived

αi,j (tk − ti−1)−
(
αi,j (tk−1 − ti−1)− s

(k−1)
i,j

)
− s

(k)
i,j = F

(k)
i,j (tk)− F

(k−1)
i,j (tk−1)

≥




βk (tk − tk−1)−
∑

l, m : l ≤ k ≤ m,
(m < j) ∨ (m = j ∧ i > l)

(
F

(k)
l,m (tk)− F

(k−1)
l,m (tk−1)

)




+

Here, a strict priority is given again to those �ows that leave the �ow of interest soonest, ties are
broken arbitrarily based on the joining node of the interfering �ows. Using Equation (4) we obtain
the following as an upper bound on the slack variables

s
(k)
i,j ≤ sup

tk−tk−1≥0

{
αi,j (tk − ti−1)−

(
αi,j (tk−1 − ti−1)− s

(k−1)
i,j

)
−

[
βk (tk − tk−1)

−
∑

l, m : l ≤ k ≤ m,
(m < j) ∨ (m = j ∧ i > l)

(
αl,m (tk − tl−1)−

(
αl,m (tk−1 − tl−1)− s

(k−1)
l,m

)
− s

(k)
l,m

)]+}
=: B

(k)
i,j

Taking it all together and using the following logical conditions, C1 = (1 ≤ i ≤ n)∧ (ti ≥ ti−1) and
C2 = (1 ≤ i ≤ k ≤ j ≤ n) ∧

(
0 ≤ s

(k)
i,j ≤ B

(k)
i,j

)
, we arrive at

F
(n)
int (tn)− F

(0)
int (t0) ≥ inf

C1,C2

{
n∑

k=1

[
βk (tk − tk−1)

−
∑

l,m:l≤k≤m

(
αl,m (tk − tl−1)−

(
αl,m (tk−1 − tl−1)− s

(k−1)
l,m

)
− s

(k)
l,m

) ]+}

Hence, to �nd the left-over service curve, we have to solve again a constrained optimization problem.
If token-bucket constrained interfering �ows and rate-latency servers are assumed, it is of a linear form
again. The number of decision variables is the number of interfering �ows times their respective number
of nodes for which they accompany the �ow of interest. At a maximum the number of decision variables
can become

n∑

i=1

n∑

j=i

(j − i + 1) =
n (n + 1) (n + 2)

6
= O (

n3
)
.

The number of constraints is two times the number of decision variables (one upper and lower bound
for each decision variable). So, if the concrete parameter values of the token buckets and rate-latency
curves are given, standard methods as for example the simplex algorithm can be used to solve such a
problem. In general, however, there is not much hope for arriving at a closed-form solution without
an excessive amount of case discriminations, unless the optimization problem has a special form.
Therefore, we stop the derivation here and come back to it in Section 5, where we treat the case
of sink trees, which results in such a special form so that the optimization problem can be solved
explicitly again.

4.4 Generalization to Piecewise Linear Curves
Based on the method presented in the previous subsections, we can compute delay bounds for the case
of token-bucket constrained interfering �ows and rate-latency servers. Now we provide a result that
allows to generalize that method to the frequent case of piecewise linear concave arrival and convex
service curves.
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Proposition 1. Given piecewise linear concave arrival curves αi =
∧ni

ki=1 γrki
,bki

for each interfering
�ow i = 1, . . . , n and piecewise linear convex strict service curves βj =

∨mj

lj=1 βRlj
,Tlj

for each node
j = 1, . . . , m on the path of the �ow of interest, the left-over service curve for the �ow of interest
under arbitrary multiplexing is given by

βl.o. ≥
n∨

i=1

m∨

j=1

ni∨

ki=1

mj∨

lj=1

βl.o.
{ki},{li} (5)

where βl.o.
{ki},{lj} are end-to-end left-over service curves under arbitrary multiplexing for a speci�c

combination of a single token bucket per interfering �ow and a single rate-latency curve per node.

Proof. Note that we can also view left-over service curves as functions βl.o. (α,β) of the arrival curves
of the interfering �ows (α = (α1, ..., αn)) as well as the service curves of the nodes (β = (β1, ..., βm)
on the path of the �ow of interest. It should be clear that left-over service curves are wide-sense
decreasing in their arrival curve arguments and wide-sense increasing in their service curve arguments.
That means, if any of the arrival curves αi is substituted by a (strictly) larger one, then the left-over
service curve can only become smaller. For the service curve arguments βi, if any becomes larger, then
the left-over service curve can only become larger, too.

Now we prove by a combination of structural induction on the given scenario and contradiction:
Induction start : For ni = mj = 1; i = 1, . . . , n; j = 1, . . . , m the statement in the proposition is

tautological.
Induction step: Assume the proposition to be correct for given ni and mj . Now suppose, at �rst

for ni + 1 Equation (5) is wrong, i.e. ∃t ≥ 0 such that

βl.o.
((

α1, ..., αi ∧ γrni+1,bni+1
, ..., αn

)
, β

)
(t)< βl.o. (α,β) (t)

or

βl.o.
((

α1, ..., αi ∧ γrni+1,bni+1
, ..., αn

)
, β

)
(t) < βl.o.

((
α1, ..., γrni+1,bni+1

, ..., αn

)
,β

)
(t)

None of the two can be the case because they would violate the wide-sense decreasing nature of
the left-over service curve for the arrival curve arguments. Since we instantiate strict service curves
only at the beginning of backlogged periods, i.e. the respective time instances are identical in all
cases, the maximum of all lower bounds that are proven above constitutes a service curve. Thus the
proposition is also true for ni + 1. The induction step over the service curve arguments follows along
similar lines. ut
So, under the assumption of piecewise linear curves we now have to solve a set of linear programs
and then compute the pointwise maximum of the service curves in this set. This can become pretty
compute-intensive if the amount of linear segments used to model arrival and service curves grows.
In particular, the number of left-over service curves to be computed and thus the number of linear
programs to be solved is

∏n
i=1

∏m
j=1 nimj .

5 Explicit Delay Bounds for Sink trees

Using the optimization-based bounding method presented in the previous section, we derive explicit
delay bounds for sink-tree networks in this section. Sink trees are a frequent special case of feed-
forward networks. For example, MPLS networks use sink-tree aggregation of label switched paths
from one edge of a network to the other. Another example are wireless sensor networks, which also
often organize their topology as a sink-tree towards a base station collecting the data.

While applying the optimization-based method to general feed-forward networks is well possible if
the parameter values of arrival and service curves are given, it is hard to conceive that a closed-form
solution for delay bounds under general arrival and service curves can be given. For sink-tree networks
this is di�erent: The optimization problem of �nding the left-over service curve for a �ow of interest
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Fig. 5. Sink-tree scenario.

has a form that allows to solve it under a general setting of piecewise linear concave arrival and convex
service curves (without instantiation of their parameters). Next we prove the result for computing the
left-over service curve. The closed-form expression of the delay bound for a �ow of interest then follows
simply from the application of Theorem 1 by calculating the horizontal deviation between the �ow's
arrival curve and its left-over service curve.

Proposition 2. Assume a sink-tree scenario as illustrated in Figure 5, note that the arrival curves
αi for the interfering �ows can be calculated using the output bound from Theorem 1. The left-over
service curve for the �ow of interest under piecewise linear concave arrival curves αi =

∧ni

ki=1 γrki
,bki

and convex strict service curves βi =
∨mi

li=1 βRli
,Tli

is given by

βl.o. =
n∨

i=1

ni∨

ki=1

mi∨

li=1

βRl.o.

{ki},{li},T l.o.

{ki},{li}

with

Rl.o.
{ki},{li} =

n∧

i=1


Rli −

i∑

j=1

rkj




T l.o.
{ki},{li} =

n∑

i=1

(
Ti + bkiVn

j=i(Rlj
−Pj

s=1 rks)
+

∑n
j=i

rki
TljVn

s=j(Rls−
Ps

v=1 rkv )

)

Proof. Using Proposition 1 from Section 4.4, it su�ces to show that Proposition 2 is true for the
special case with ni = mi = 1, i.e. the interfering �ows are assumed to be token-bucket constrained
and the servers are of the rate-latency type. In Section 4.3, we described how to proceed for general
feed-forward networks up to the point where arrival and service curves need to be instantiated with
a certain shape (not yet their parameters). We now continue at this point for the special case of
sink trees. In particular, the optimization problem can be rephrased as: Under the following logical
conditions, C1 = (1 ≤ i ≤ n) ∧ (ti ≥ ti−1) and C2 = (1 ≤ i ≤ k ≤ n) ∧

(
0 ≤ s

(k)
i ≤ B

(k)
i

)
,

F
(n)
int (tn)− F

(0)
int (t0) ≥ inf

C1,C2

{
n∑

k=1

[
βk (tk − tk−1)

−
∑

l:l≤k

(
αl (tk − tl−1)−

(
αl (tk−1 − tl−1)− s

(k−1)
l

)
− s

(k)
l

) ]+}

Note that the second index (the egress points of interfering �ows) could be omitted for several variables,
because all interfering �ows accompany the �ow of interest to the destination node n, thus the ingress
node is su�cient for identi�cation.

The upper bounds of the s
(k)
i can be computed as follows

B
(k)
i = sup

tk−tk−1≥0

{
αi (tk − ti−1)−

(
αi (tk−1 − ti−1)− s

(k−1)
i

)
−

[
βk (tk − tk−1)
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−
∑

l : l ≤ k
l < i

(
αl (tk − tl−1)−

(
αl (tk−1 − tl−1)− s

(k−1)
l

)
− s

(k)
l

) ]+}

≥ sup
tk−tk−1≥0

{
i∑

l=1

(αl (tk − tl−1)− αl (tk−1 − tl−1))− βk (tk − tk−1)

}
+ s

(k−1)
i +

i−1∑

l=1

(
s
(k−1)
l − s

(k)
l

)

= V
(k)
i + s

(k−1)
i +

i−1∑

l=1

(
s
(k−1)
l − s

(k)
l

)

Note that in the summation (within the sup) only the arbitrary tie-breaker remained, because
scheduling between interfering �ows does not matter here. This fact is also the physical explanation
why the optimization problem is of a �nicer� form, that allows to arrive at explicit expressions. The ≥
step can be done because it means the optimization problem is solved under more stringent constraints,
while still arriving at tight bounds, thus showing that the optimal solution has not been excluded from
the feasible region.

Next, the actual instantiation with αi = γri,bi and βi = βRi,Ti , i = 1, ..., n is performed and,
following similar lines as in Section 4.1, we obtain

F
(n)
int (tn)− F

(0)
int (t0) ≥

n∧

k=1

(
Rk −

k∑

l=1

rl

)
inf
C2

{[
tn − t0 −

n∑

k=1

Tk

−
n∑

k=1

bk +
(∑k

l=1 rl

)
Tk +

∑k
l=1

(
s
(k−1)
l − s

(k)
l

)

∧n
k=1

(
Rk −

∑k
l=1 rl

)



+




and

V
(k)
i = bi1{i=k} +

(
i∑

l=1

ri

)
Tk

This can be put together more clearly as the following linear programming problem

max .

n∑

k=1

bk +
(∑k

l=1 rl

)
Tk +

∑k
l=1

(
s
(k−1)
l − s

(k)
l

)

∧n
k=1

(
Rk −

∑k
l=1 rl

)

s.t. 0 ≤ s
(k)
i ≤ V

(k)
i + s

(k−1)
i +

i−1∑

l=1

(
s
(k−1)
l − s

(k)
l

)
, k = 1, ..., n, i = 1, ..., k

The explicit solution to this problem can be understood by using the structure of the problem as
well making oneself the interpretation of the s

(k)
i clear: it is the accumulated burstiness of interfering

�ow i passed on from node k upstream. First look at 0 ≤ s
(1)
1 ≤ V

(1)
1 = b1 + r1T1: the burstiness due

to �ow 1 should be passed on to upstream nodes if any of the residual rates of upstream servers is
smaller than that of node 1, that means s

(1)
1 should be set to its upper bound b1 + r1T1. Otherwise

(node 1 has the lowest residual rate), it should be set to its lower bound 0, because the multiplexing
with �ow 1 should then be paid at node 1 (to be more accurate its accumulated burstiness up to that
point). Looking now at node 2, we have to decide on the accumulated burstiness due to �ow 1 and
2 (since they have last been paid) which is either passed on to upstream nodes or not, meaning they
either take on their upper or lower bound. Clearly the decision will be the same for both �ows here,
because it is again based on the residual rates of node 2 and upstream nodes, which are the same
for both �ows due to the sink-tree topology. Hence, s

(2)
1 and s

(2)
2 are decided. This argument can be

continued and results in the fact that any burst term and any burstiness increase is paid at the node
with the lowest residual rate on the subpath they actually traverse. ut
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The tightness of the left-over service curve in the above derivation can be seen using a sample
path argument as in Section 4.2. However, the sample path is actually simpler to construct owing
to the fact that overlapping interference is avoided in sink trees. Here, we just state the way to
construct a worst-case sample path to attain the latency of the left-over service curve (the remaining
argumentation follows along the same lines as in Section 4.2): Interfering �ows always burst when the
bit-under observation of the �ow of interest just arrives at the node where the respective interfering
�ow joins; at the same time instant the respective node takes its latency; otherwise interfering �ows
send at their sustained rate and servers provide their minimum rate. Hence, the worst-case sample
path is fairly straightforward compared to the overlapping interference scenario.

The latency terms of the left-over service curve have an intuitive form: Each interfering �ow's
burst and its burstiness increases at subsequent nodes are paid at the minimum residual rate server
they actually traverse. This insight also means that if residual rates are monotonically decreasing on
the path of the �ow of interest then PMOO-SFA actually becomes tight. Furthermore, note that the
latency terms, and therefore also the delay bound, scale quadratically in the number of nodes on the
path of the �ow of interest.

5.1 Numerical Experiments

Let us now shed some light on what can be the quantitative gain in using the optimization-based
bounding method compared to the other methods based on direct application of network calculus for
the case of sink-tree networks.

We choose a simple experimental setup with fully occupied binary trees, where each node acts
as a source of data. The sources are token-bucket constrained with a sustained rate of 10 Mbps and
a bucket depth of 1 Mb. Each node o�ers a strict rate-latency service curve with a latency of 0.1
ms and the service rate dimensioned such that a certain target utilization is achieved. The server
utilizations are varied over the experiments. All calculations have been performed using the DISCO
Network Calculator1.

In the �rst experiment we compare, under varying tree depths, all of the methods described in the
report: TFA, SFA, PMOO-SFA, and the optimization-based bounding method (denoted as TIGHT
in the �gures). The delay bounds for a leaf in the sink-tree under a utilization of 20% at each of the
nodes are displayed in Figure 6.

Clearly, we can observe a considerable improvement of the delay bounds with increasing tree
depths. Interestingly, it can also be observed, that the PMOO-SFA, while being second best for tree
depths up to 12, is outperformed by SFA and even TFA for larger tree depths. This stresses again the
insights gained in Section 3.

In a second experiment, the e�ect of the utilization on the delay bounds are investigated. Both, the
tight bound and the PMOO-SFA are computed for utilizations of 20, 50, and 90%, again for varying
tree depths. The results are shown in Figure 7.

As can be observed, the tight bound reacts pretty mildly on higher utilizations, with an approx-
imately linear increase of the delay bound when increasing the tree depth (the quadratic regime
mentioned above only shows for even larger tree depths), while the PMOO-SFA su�ers badly from
higher utilizations and exhibits a steep super-linear increase in its bounds for increasing tree depths.
As an extreme example, for a tree depths of 15 at a utilization of 90%, the PMOO-SFA bound is
1382s, while the tight bound is about 6s.

6 Conclusions

In this report, we have demonstrated that direct application of network calculus in aggregate mul-
tiplexing scenarios for which FIFO cannot be assumed is problematic with respect to the tightness
of delay bounds. The nice algebraic characteristics of network calculus cannot be preserved under
arbitrary multiplexing. Based on this insight, we have proposed an alternative method to arrive at
tight bounds for arbitrary multiplexing in feed-forward networks. The method consists of formulating
1 The DISCO Network Calculator is publicly available under http://disco.informatik.uni-kl.de/content/Downloads.
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Fig. 6. All bounding methods compared at a utilization of 20%.

an optimization problem. For the case of piecewise linear concave arrival and convex service curves
(a very frequent case), we obtain a set of linear programming problems, which can be solved by stan-
dard methods, and from which the solution for a tight delay bound can be composed. For the special
case of sink-tree networks we have provided a closed-form expression of the delay bound based on this
method. Numerical experiments have shown a clear edge for the novel bounding method over methods
based on direct application of network calculus.
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