
Performance Bounds in Feed-Forward Networks
under Blind Multiplexing

Jens B. Schmitt, Frank A. Zdarsky, and Ivan Martinovic
disco | Distributed Computer Systems Lab
University of Kaiserslautern, Germany

Technical Report No. 349/06

April 2006 / Revised in July 2006

Abstract
Bounding performance characteristics in communication networks is

an important and interesting issue. In this study we assume uncertainty
about the way di�erent �ows in a network are multiplexed, we even drop
the common FIFO assumption. Under so-called blind multiplexing we de-
rive new bounds for the tractable, yet non-trivial case of feed-forward net-
works. This is accomplished for pragmatic, but general tra�c and server
models using network calculus. In particular, we derive an end-to-end
service curve for a �ow of interest under blind multiplexing, establishing
what we call the pay multiplexing only once principle. We specify the al-
gorithms necessary to apply this result in a network of blind multiplexing
nodes. Since these algorithms may have prohibitive computational costs,
we present strategies to reduce the computational e�ort in a controlled
manner such that the quality of the bounds is a�ected as little as possible.
Finally we present some numerical results from a network calculus tool
we developed and compare our bounds against the best known bounds for
networks of blind multiplexing nodes.

Keywords: Network calculus, aggregate scheduling, deterministic guar-
antees.

1

1 Introduction
Bounding performance characteristics in communication networks is a funda-
mental issue and has important applications in network design and control.
Network calculus, which is a set of relatively new developments that provide
deep insights into �ow problems encountered in networks of queues [18], provides
a deterministic framework for worst-case analysis of delay and backlog bounds.
The basic network calculus results pioneered by [9], [10] in the early 1990s,
however, implicitly assume some form of per-�ow treatment inside the network
in that they only apply to tandems of nodes. Large-scale packet-switched net-
works as the Internet operate on large aggregates of tra�c and are far-o� from
supporting any per-�ow state operations, as for example, sophisticated per-�ow
scheduling. Nevertheless, as [18] pointed out in 2001: �The state of the art
for aggregate multiplexing is surprisingly poor.� Since then considerable e�orts
have been made to address issues related to bounding performance characteris-
tics in networks of aggregate multiplexing: [7] gives a delay bound for general
FIFO networks; [15] extends this work to packetized �ows; [27] extends it fur-
ther to nodes that are allowed to time-stamp packets (similar to what had been
proposed previously in [12] as a damper); [26] reproduces the bound found in [7]
and uses it for �ow population-independent admission control; [13], [14] treat the
case of feed-forward FIFO networks; [19] investigates the optimal delay bound
under FIFO multiplexing; [25] gives additive delay bounds for tree topologies.

All of the above work assumes FIFO nodes. However in practice, as nicely
argued in [17], many devices cannot be accurately described by a FIFO model
because packets arriving at the output queue from di�erent input ports may
experience di�erent delays when traversing a node. This is due to the fact
that many networking devices like routers are implemented using input-output
bu�ered crossbars and/or multistage interconnections between input and output
ports. Hence, packet reordering on the aggregate level is a frequent event (not
so on the �ow level) and should not be neglected in modelling. Therefore, in
this work we drop the FIFO assumption and make essentially no assumptions on
the way aggregates are multiplexed at servers, i.e. we assume blind multiplexing
[18]:

Definition 1: (Blind Multiplexing) If a node multiplexes several �ows and
the arbitration discipline between the �ows accessing the service of the node is
assumed to be unknown we call it a blind multiplexing node.

Another issue that arises during the investigation of aggregate scheduling is
stability, i.e. whether a �nite delay bound exists [4], [2]. For general networks
of arbitrary topology it is still very much an open research problem under which
circumstances a bound on the delay exists at all [18]. In [7] a su�cient condition
for stability in general networks is given. Yet, for larger networks this puts a
heavy constraint on the utilization of the network since the maximum allowable
utilization is inversely proportional to the network diameter. At the other end of
the spectrum of topologies, we have tandem networks for which network calculus
has become famous to deliver tight bounds for any utilization ≤ 1 (mainly
building upon the celebrated concatenation theorem [18]). We concentrate on

2

the middle ground between these two extremes: feed-forward networks.
Definition 2: (Feed-Forward Network) A network is feed-forward if it is

possible to �nd a numbering of its links such that for any �ow through the
network the numbering of its traversed links is an increasing sequence.

It is well-known and easy to show that feed-forward networks are stable for
any utilization ≤ 1 [18]. While many networks are obviously not feed-forward,
many important instances are. Among these:

• switched networks that typically use spanning trees for routing [20],

• wireless sensor networks that can often be modelled as a single-sink or
multiple-sink topology that is feed-forward, in fact wireless sensor net-
works have even been proposed as an application �eld of network calculus
[22],

• MPLS multipoint-to-point label-switched paths which also have been tack-
led using network calculus in [25].

Furthermore, there are very e�ective techniques to make a general network feed-
forward. One of the advanced techniques (in comparison to a simple spanning
tree) is the so-called turn-prohibition algorithm [23]. The idea of this algorithm
is to prohibit a minimum number of so-called turns (pairs of consecutive edges),
but not to delete the edges themselves as a spanning tree algorithm would. Turn-
prohibition achieves considerably higher throughput than spanning trees and
remains fairly close to the maximum achievable throughput of general networks
of medium size [23].

So we investigate how to compute performance bounds in feed-forward net-
works of nodes with blind multiplexing under pretty general assumptions about
tra�c and server models. To the best of our knowledge this has not been done
before.

2 Network Calculus Background
In this section, the necessary background material for the network calculus
applied in this report is presented. Furthermore, some additions as they are
needed throughout the report are given.

2.1 Network Calculus Basics
Network calculus is a min-plus system theory for deterministic queuing systems
which builds on the calculus for network delay in [9], [10]. The important con-
cept of minimum service curve was introduced in [11], [21], [5], [16], [1] and the
concept of maximum service curve in [12]. The service curve based approach
facilitates the e�cient analysis of tandem queues where a linear scaling of per-
formance bounds in the number of traversed queues is achieved as elaborated in
[8] and referred to also as pay bursts only once phenomenon in [18]. A detailed

3

treatment of min-plus algebra and of network calculus can be found in [3] and
[6], [18], respectively.

As network calculus is built around the notion of cumulative functions for
input and output �ows of data, the set of real-valued, non-negative, and wide-
sense increasing functions passing through the origin plays a major role:

F =
{
f : R+ → R+, ∀t ≥ s : f(t) ≥ f(s), f(0) = 0

}

In particular, the input function F (t) and the output function F ∗(t), which
cumulatively count the number of bits that are input to respectively output
from a system S, are ∈ F . Throughout the report, we assume in- and output
functions to be continuous in time and space. This is not a major restriction
as there are transformations from discrete to continuous models which do not
a�ect the accuracy of the results signi�cantly [18].

Definition 3: (Min-plus Convolution and Deconvolution) The min-plus
convolution respectively deconvolution of two functions fand g are de�ned to
be

(f ⊗ g) (t) =
{

inf0≤s≤t {f(t− s) + g(s)} t ≥ 0
0 t < 0

(f ® g) (t) = sup
u≥0

{f(t + u)− g(u)}

It can be shown that the triple (F ,∧,⊗), where ∧ denotes the minimum op-
erator (which ought to be taken pointwise for functions), constitutes a dioid [18].
Also, the min-plus convolution is a linear operator on the dioid (R ∪ {+∞},∧, +),
whereas the min-plus deconvolution is not a linear operator on that dioid and is
not even closed in F . These algebraic characteristics result in a number of rules
that apply to those operators. The rules most important to our investigation
are summarized in the following theorem:

Theorem 1: (Properties of ⊗) Let f, g, h ∈ F

1. Isotonicity of ⊗: if f ≤ h then f ⊗ g ≤ h⊗ g

2. Commutativity of ⊗: f ⊗ g = g ⊗ f

3. Associativity of ⊗: (f ⊗ g)⊗ h = f ⊗ (g ⊗ h)

4. Convolution of concave function: if f and g are concave functions and
f (0) = g (0) = 0 then f ⊗ g = f ∧ g.

5. Convolution of piecewise linear convex functions: if f and g are piece-
wise linear convex functions, f ⊗ g is obtained by putting end-to-end the
di�erent linear pieces of f and g, sorted by increasing slopes.

6. Composition of ®: (f ® g)® h = f ® (g ⊗ h)

7. Distributivity of ⊗ with respect to ∧: (f ∧ g)⊗ h = (f ⊗ h) ∧ (g ⊗ h)

8. Duality between ⊗and ®: f ® g ≤ h ⇐⇒ f ≤ g ⊗ h

4

The proof of this list of properties can be found in [18]. Note that this list is by
far not exhaustive. Let us turn now to the performance characteristics of �ows
that can be bounded by network calculus means:

Definition 4: (Backlog and Delay) Assume a �ow with input function F
that traverses a system S resulting in the output function F ∗. The backlog of
the �ow at time t is de�ned as

b(t) = F (t)− F ∗(t)

Assuming �rst-in-�rst-out delivery, the delay for a bit input at time t is de�ned
as

d(t) = inf {τ ≥ 0 : F (t) ≤ F ∗(t + τ)}
Now the arrival and server processes speci�ed by input and output functions

are bounded based on the central network calculus concepts of arrival and service
curves:

Definition 5: (Arrival Curve) Given a �ow with input function R a function
α ∈ F is an arrival curve for R if and only if

∀t, s ≥ 0, s ≤ t : R(t)−R(t− s) ≤ α(s)

⇔ R ≤ R⊗ α ⇔ α ≥ R®R

Note that an arrival curve which is not sub-additive can be improved by its
sub-additive closure [18]. As a further remark, remember that any concave func-
tion is sub-additive. The next corollary is a simple implication of the de�nition
of arrival curves and the isotonicity of the min-plus convolution.

Theorem 2: (Knowledge of Several Arrival Curves) If α1 and α2 are arrival
curves for a �ow F then α1 ⊗ α2 is also an arrival curve for F .

Definition 6: (Minimum and Maximum Service Curve) If the service pro-
vided by a system S for a given input function F results in an output function
F ∗ we say that S o�ers a minimum service curve β respectively a maximum
service curve β̄ if and only if

F ∗ ≥ F ⊗ β respectively F ∗ ≤ F ⊗ β̄

The minimum service curve is more commonly used (therefore the minimum
is often dropped from its name), since the maximum service curve is a weaker
concept. Nevertheless, the maximum service curve will prove itself valuable
for our purposes in improving the output bound of interfering �ows. There is
also a strict (minimum) service curve de�nition which is less general than the
minimum service curve but sometimes is required to allow an analysis.

Definition 7: (Strict Minimum Service Curve) Let β ∈ F . We say that
system S o�ers a strict minimum service curve β to a �ow if, during any back-
logged period of duration u, i.e. for any t for which ∀s, 0 ≤ s < u : b(t− s) > 0,
the output of the �ow is at least equal to β(u).

Note that any strict service curve is also a service curve. Using those concepts
it is possible to derive basic performance bounds on backlog, delay and output:

5

Theorem 3: (Performance Bounds) Consider a system S that o�ers a mini-
mum service curve β and a maximum service curve β̄. Assume a �ow F travers-
ing the system has an arrival curve α. Then we obtain the following performance
bounds:
Backlog: ∀t : b(t) ≤ (α® β) (0) =: v(α, β)
Delay: ∀t : d(t) ≤ inf {t ≥ 0 : (α® β) (−t) ≤ 0} =: h (α, β)
Output (arrival curve α∗ for F ∗): α∗ ≤(

α⊗ β̄
)® β

Note that, if the maximum service cannot be bounded, i.e. ∀t > 0 : β̄(t) = ∞
(which is the neutral element for the min-plus convolution), we obtain for the
output bound α∗ ≤α ® β. One of the strongest results of network calculus
(albeit being a simple consequence of the associativity of ⊗) is the concatenation
theorem that enables us to investigate tandems of systems as a single system:

Theorem 4: (Concatenation Theorem for Tandem Systems) Consider a �ow
that traverses a tandem of systems S1 and S2. Assume that Si o�ers a minimum
service curve βi and a maximum service curve β̄i, i = 1, 2 to the �ow. Then the
concatenation of the two systems o�ers a minimum service curve β1 ⊗ β2 and a
maximum service β̄1 ⊗ β̄2 to the �ow.

So far we have only covered the tandem network case, the next result factors
in the existence of other interfering �ows. In particular, it states the minimum
service curve available to a �ow at a single node under cross-tra�c from other
�ows at that node.

Theorem 5: (Blind Multiplexing Nodal Service Curves) Consider a node
blindly multiplexing two �ows 1 and 2. Assume that the node guarantees a
strict minimum service curve β and a maximum service β̄ to the aggregate of
the two �ows. Assume that �ow 2 has α2 as an arrival curve. Then

β1 = [β − α2]
+

is a service curve for �ow 1 if β1 ∈ F . β̄ remains the maximum service curve
also for �ow 1 alone. Here, the [.]+operator is de�ned as [x]+ = x ∨ 0, where ∨
denotes the maximum operator.

Note that we require the minimum service curve to be strict. In [18] an
example is given showing that the theorem otherwise would not hold. It is this
theorem that we will generalize to a feed-forward network case in Section 4 in
such a way that the costs of multiplexing with interfering �ows are only paid
once, which forms one of the major contributions of this report. As already
mentioned there is very profound work on aggregate scheduling in general net-
works, the most well known result is probably given by [7], later on reproduced
and extended by [27], [15]. As the actual delay bound is derived based on a
FIFO assumption we only extract the su�cient existence condition for a delay
bound which is also valid under blind multiplexing:

Theorem 6: (Blind Multiplexing in General Networks) Assume a general
network of diameter h with any node n providing a sustained rate Rn and n
having bounds on the rates of all incoming tra�c Cn. Let us de�ne the node
utilization for node n as un =

P
n∈f rf

Rn
, with rf denoting the sustained rate of

a �ow f and n ∈ f means that �ow f traverses node n. Then a delay bound

6

exists if ∨
n

un <
∧
n

σ{Cn>Rn}

(
Cn

(Cn −Rn) (h− 1) + Rn

)

with σ{cond} (x) equals x if cond is true and 1 otherwise.

2.2 Some Additions
In this subsection, we give some basic properties furtherly helpful in the network
calculus derivations of Section 4.

Lemma 1: (Distributivity of [.]+ with respect to ∨) Let f, g be two real-
valued functions then it applies that

[f ∨ g]+ = [f]+ ∨ [g]+

Proof: Assume there is a t for which [(f ∨ g) (t)]+ 6= [f (t)]+ ∨ [g (t)]+.
Either f(t) > 0 or g(t) > 0 (otherwise both sides are 0), also both cannot be
> 0 (otherwise both sides are equal as the [.]+ would have no e�ect). Without
loss of generality assume f(t) > 0 and g(t) ≤ 0, yet then [(f ∨ g) (t)]+ =
[f (t)]+ = [f (t)]+ ∨ [g (t)]+ which contradicts the assumption and thus proves
the statement of the lemma.

Note however, the min-plus convolution does not distribute with the mini-
mum operator.

ut
Lemma 2: (Lower bound on [.]+) Let f, g be two real-valued functions then

it applies that
[f + g]+ (t) ≥ (f + g) (t) · 1{f(t)≥0,g(t)≥0}

where we use the indicator function 1{cond}, which is 1 if cond is true and 0
otherwise.

Proof: Assume the statement does not hold, that means: ∃t : [f + g]+ (t) <
(f + g) (t) · 1{f(t)≥0,g(t)≥0}. Now f(t) and g(t) cannot both be ≥ 0 since other-
wise both sides of the inequation are the same. If, however, one of them is < 0
then the right hand side of the inequation is 0 and thus ≤ to the left hand side.
Thus the statement must hold.

ut
Lemma 3 (Commutativity of inf and ∨) Let fi : Rn → R, i = 1, . . . , n. Let

S ⊂ Rn then

inf−→x ∈S

{
n∨

i=1

fi (−→x)

}
=

n∨

i=1

inf−→x ∈S
fi (−→x)

Proof: On the one hand (�≤�)

∀−→x0 ∈ S : inf−→x ∈S

{
n∨

i=1

fi (−→x)

}
≤

n∨

i=1

fi (−→x0)

7

⇒ inf−→x ∈S

{
n∨

i=1

fi (−→x)

}
≤

{
n∨

i=1

inf−→x0∈S
fi (−→x0)

}

on the other hand (�≥�)

∀−→x0 ∈ S :
n∨

i=1

fi (−→x0) ≥
n∨

i=1

inf−→x ∈S
fi (−→x)

⇒ inf−→x0∈S

{
n∨

i=1

fi (−→x0)

}
≥

n∨

i=1

inf−→x ∈S
fi (−→x)

which proves the statement of the lemma.
Lemma 4: (Alternative De�nition of Strict Service Curve) The following

two statements are equivalent: (i) a system S o�ers β as a strict service curve
to a �ow F , (ii) ∀t ≥ 0 : ∃u ≥ 0 : F (t) ≥ F (t− u) + β(u) and t− u is the start
of the last backlogged period for F . Here we assume that for any point in time
t where the system is not backlogged, the start of the last backlogged period is
de�ned as t itself (i.e. u = 0).

Proof: (i) ⇔ during any backlogged period of duration u ≥ 0 the system
o�ers at least service β(u) to the �ow F .
⇔ for any time t for which the last backlogged period started at t−u the output
of the �ow F ∗ satis�es: F ∗ (t)− F ∗(t− u) ≥ β(u)
⇔ for any time t for which the last backlogged period started at t−u the output
of the �ow F ∗ satis�es: F ∗ (t) ≥ F (t− u) + β(u)
⇔ (ii)

ut

3 Network Calculus with Piecewise Linear Curves
To be able to compute performance bounds in networks of blind multiplexing
nodes, we need to apply basic network calculus operations like min-plus con-
volution and deconvolution on the arrival and service curves we encounter in a
given scenario. This cannot be done on general functions with arbitrary charac-
teristics but must, of course, eventually be done with speci�c instances of arrival
and service curves. However, a class of functions which is both tractable as well
as general enough to express all common candidates is that of piecewise linear
functions. Hence, in this section we present for general piecewise linear arrival
and service curves basic network calculus operations upon which further on the
network analysis will be built in Section 5.

3.1 A Catalog of Useful Functions
In the de�nition of piecewise linear arrival and service curves the following
catalog of functions from F is helpful:

8

Definition 8: Auxiliary functions from F
Burst delay functions: δT (t) =

{
+∞ t > T
0 t ≤ T

A�ne function (token bucket): γr,b(t) =
{

rt + b t > 0
0 t ≤ 0

Rate latency function: βR,T (t) =
{

R(t− T) t > T
0 t ≤ T

From these functions general piecewise linear function can be constructed
using the

∨
and

∧
as we will encounter in the next subsection. Note that, as

mentioned in [18], it applies that ∀f ∈ F : (f ⊗ δT) (t) = f (t− T). Hence, a
convolution with the burst delay function δT results in a shift along the x-axis
according to the value of T .

3.2 Choice of Arrival and Service Curves
As already discussed focusing on piecewise linear functions as arrival and ser-
vice curves is no practical restriction, since it is still general enough to cover
virtually any realistic case of tra�c and server models. In particular many in-
vestigations make stronger assumptions: for example treating only the case of
token buckets as arrival curve and rate latency functions as service curve is a
popular simpli�cation of matters.

3.2.1 Arrival Curve
Let us assume a piecewise linear concave arrival curve:

α =
n∧

i=1

γri,bi

On the one hand it is possible to already use such a function as a tra�c source
description in order to be able to closely approximate a source's worst case
behaviour. On the other hand, looking at the network analysis we cannot, as
we will see when we factor in the maximum service curve, avoid to model arrival
curves inside the network as general piecewise linear concave functions. This
is due to the fact that they result from the addition of multiple �ows induced
by the multiplexing of the latter. To assume concavity is no major restriction
because, as discussed in [18], non-concave functions (unless they are not sub-
additive to be accurate) can be improved by pure knowledge of themselves, thus
they cannot be tight.

3.2.2 Minimum Service Curve
Let us assume a piecewise linear convex minimum service curve:

β =
m∨

j=1

βRj ,Tj

9

A piecewise linear convex minimum service curve results from deriving the ser-
vice curve for a �ow of interest at a node that blindly multiplexes this �ow with
other �ows which, as an aggregate, have a piecewise linear concave arrival curve.
Again, it might also be useful to model a node's service curve using several lin-
ear segments. To assume convexity is not a major restriction, as it might for
instance apply if a node also has other duties. Though, in contrast to the arrival
curve which is not sensible for non-concave functions (non-sub-additive to be
exact), there are potentially sensible non-convex service curves as for example
presented in [24], although this is rather uncommon.

3.2.3 Maximum Service Curve
Let us assume a piecewise linear almost concave maximum service curve:

β̄ =

(
l∧

k=1

γr̃k,b̃k

)
⊗ δL

By almost concave we mean that the curve is only concave for values of t > L
and is 0 for values t ≤ L. If L > 0 this models a node that has a certain
minimum latency. The piecewise concavity models again the fact that a node
may also have other duties. The concavity in contrast to the convexity for the
minimum service curve is due to the fact that a best case instead of a worst case
perspective has to be taken.

Before discussing the required network calculus operations on these curves,
we �rst make an observation how the output bound of Theorem 3 can be im-
proved under maximum service curves as they are assumed here.

3.3 Tightening the Output Bound
Realising that the maximum service curve induces arrival constraints for the
output we can improve the output bound from Theorem 3 by the following
lemma. (We prove it slightly more general�concave instead of just piecewise
linear concave�than necessary for our purposes.)

Lemma 5: (Improvement of Output Bound) Under the same assumptions
as in Theorem 3, let additionally L be such that L = sup{t ≥ 0 : β̄ (t) = 0} (L
can be regarded as minimum/�xed delay for the system), if β̄ ⊗ δ−L is concave
then the output bound for any �ow R can be calculated as

α∗ =
((

α⊗ β̄
)® β

)⊗ (
β̄ ⊗ δ−L

)

Proof: A bound on the system output at time t can be computed as
(
β̄ ® β̄

)
(t) = sup

s≥0

{
β̄ (t + s)− β̄ (s)

}

Since we have assumed β̄(t) to be zero for t ≤ L and to be concave for t > L
this means that the sup is taken on at s = L such that

(
β̄ ® β̄

)
(t) = β̄(t + L) =

(
β̄ ⊗ δ−L

)
(t)

10

Hence, as β̄ ⊗ δ−L is a bound on the output of the system it is also an arrival
curve for any output function R∗ of the system. On the other hand, we have(
α⊗ β̄

)®β as an arrival curve for any R∗ from Theorem 3. Applying Theorem
2 we obtain

((
α⊗ β̄

)® β
)⊗ (

β̄ ⊗ δ−L

)
as an output bound.

ut

3.4 Network Calculus Operations
We now have everything set to examine the network calculus operations we re-
quire as basic building blocks for a network analysis. First of all computing
output bounds of the �ows in the network is an important operation as it allows
to separate �ows of interest from interfering �ows by using Theorem 5 respec-
tively the results we present in Theorem 7. Lemma 4 gives us the general rule
to compute the output bound:

α∗ =
((

α⊗ β̄
)® β

)⊗ (
β̄ ⊗ δ−L

)

Hence, starting from the innermost operation, the convolution of the arrival
curve and the maximum service must be determined �rst:

α⊗ β̄ = α⊗
((

l∧

k=1

γr̃k,b̃k

)
⊗ δL

)
=

(
α⊗

l∧

k=1

γr̃k,b̃k

)
⊗ δL

=
(
α ∧ (

β̄ ⊗ δ−L

))⊗ δL =: σ

Here we used �rst the associativity of ⊗, then rule 4 from Theorem 1. While
σ might look complex, it is easy to compute: �rst shift the maximum service
curve to the left by its latency then take the minimum with the concave arrival
curve and shift the result to the right by the latency of the maximum service
curve. Next, the deconvolution of the resulting almost concave function σ with
the minimum service curve is calculated as:

σ ® β = (σ ⊗ δ−X)− β (X) =: ζ

where X = supt≥0

{
dσ
dt (t) ≥ dβ

dt (t)
}
. X must be at one of the in�exion points of

σ and β. Note that ζ is concave since always X ≥ L. And �nally ζ is convolved
with the right-shifted maximum service curve using rule 4 from Theorem 1:

ζ ⊗ (
β̄ ⊗ δ−L

)
= ζ ∧ (

β̄ ⊗ δ−L

)

So, in terms of the initial curves we receive as an overall result for the output
bound:

α∗ =
((((

α ∧ (
β̄ ⊗ δ−L

))⊗ δL

)⊗ δX

)− β (X)
) ∧ (

β̄ ⊗ δ−L

)

Equipped with this a single node analysis can be accomplished. However, an-
other basic operation consists of using the concatenation theorem to collapse

11

systems in sequence into one large system by calculating their min-plus convo-
lution. So the convolution of piecewise linear minimum and maximum service
curves must be computed. For the minimum service curves we can draw upon
rule 5 from Theorem 1 as they are piecewise linear convex functions ∈ F . For
maximum service curves the next lemma gives us the computation of the min-
plus convolution of two almost concave function:

Lemma 6: (Min-Plus Convolution of Almost Concave Functions) Consider
two almost concave piecewise linear functions β̄1 and β̄2 with latencies L1 and
L2, then their min-plus convolution can be computed as follows

β̄1 ⊗ β̄2 =
(
β̄1 ⊗ δ−L1

) ∧ (
β̄2 ⊗ δ−L2

)⊗ δL1+L2

Proof: Again we make use of min-plus algebra

β̄1 ⊗ β̄2 =
((

β̄1 ⊗ δ−L1

)⊗ δL1

)⊗ ((
β̄2 ⊗ δ−L2

)⊗ δL2

)

=
((

β̄1 ⊗ δ−L1

)⊗ (
β̄2 ⊗ δ−L2

))⊗ (δL1 ⊗ δL2)

=
((

β̄1 ⊗ δ−L1

) ∧ (
β̄2 ⊗ δ−L2

))⊗ δL1+L2

Here we used associativity and commutativity of ⊗ as well as again rule 4 from
Theorem 1.

ut

4 The End-to-End Service Curve under Blind Mul-
tiplexing

Before we come to the actual algorithms for network analysis applying the ba-
sic operations that were just presented, we investigate di�erent alternatives to
derive the end-to-end service curve for a �ow of interest through a network
of blind multiplexing nodes. One possibility is to derive the end-to-end ser-
vice curve based on the concatenation theorem and the result for single node
blind multiplexing in Theorem 5. This evident method is mentioned in [18].
For example, if a scenario as depicted in Figure 1 is to be analysed for �ow 1,
a straightforward end-to-end service curve for �ow 1 would be determined as
follows (using the notation in Figure 1):

βSF
1 = [β1 − α2 − α3]

+ ⊗ [β2 − α∗2 − α∗3]
+ ⊗ [β3 − α∗∗3]+

Yet, another way to analyse the system is to concatenate node 1 and 2,
subtract �ow 2 and thus receive the service curve for �ow 1 and 3 together,
concatenate this with node 3 and subtract �ow 3, essentially making optimal
use of the sub-path sharing between the interfering �ows:

βPS
1 =

[
[(β1 ⊗ β2)− α2]

+ ⊗ β3 − α3

]+

12

11,αF

22 ,αF

33 ,αF

1β 3β2β

**

2

**

2 ,αF

*

2

*

2 ,αF

**

1

**

1 ,αF

**

3

**

3 ,αF

3

3 ,αF

1

1 ,αF

*

3

*

3 ,αF

*

1

*

1 ,αF
11,αF

22 ,αF

33 ,αF

1β 3β2β

**

2

**

2 ,αF

*

2

*

2 ,αF

**

1

**

1 ,αF

**

3

**

3 ,αF

3

3 ,αF

1

1 ,αF

*

3

*

3 ,αF

*

1

*

1 ,αF

Figure 1: Nested interfering �ows scenario.

11,αF

22 ,αF

33 ,αF

1β 3β2β

**

2

**

2 ,αF

*

2

*

2 ,αF

**

1

**

1 ,αF

**

3

**

3 ,αF

3

3 ,αF

1

1 ,αF
*

1

*

1 ,αF
11,αF

22 ,αF

33 ,αF

1β 3β2β

**

2

**

2 ,αF

*

2

*

2 ,αF

**

1

**

1 ,αF

**

3

**

3 ,αF

3

3 ,αF

1

1 ,αF
*

1

*

1 ,αF

Figure 2: Overlapping interfering �ows scenario.

If, for example, βi = β3,0, i = 1, 2, 3 and α2 = α3 = γ1,1 we obtain: βSF
1 = β1,12 1

2

and βPS
1 = β1,2. Hence, exploiting the sub-path sharing between the interfering

�ows, we obtain an end-to-end service curve with considerably lower latency.
Put in other words, we have to pay for the blind multiplexing of the �ows only
once, which is why we also call this phenomenon the pay multiplexing only once
(PMOO) principle, in analogy to the well-known pay bursts only once principle
[18]. Basically the same observation was made in [13], [14] for FIFO multiplexing
under the special case of token bucket arrival curves and rate-latency service
curves. We derive the end-to-end service curve for blind multiplexing exploiting
the PMOO principle under general piecewise linear concave arrival curves and
general piecewise linear convex service curves.

The di�culty in obtaining the end-to-end service under blind multiplexing
for a �ow of interest lies in situations as depicted in Figure 2. Here, in contrast
to the scenario of nested interfering �ows as in Figure 1, we have a scenario
of overlapping interfering �ows, i.e. �ows 2 and 3 which interfere with �ow
1, our �ow of interest, that share some servers with each other but each also
traverses servers the other does not traverse. For such a scenario the end-
to-end service curve cannot be derived as easily as demonstrated before but
requires to look deeper into the input and output relationships of the �ows.
The following theorem states how to calculate the end-to-end service curve under
blind multiplexing exploiting the PMOO principle for the canonical example of
overlapping interfering �ows in Figure 1.

Theorem 7 (End-to-End Minimum Service Curve under Blind Multiplexing
� Pay Multiplexing Only Once Principle)
Consider a scenario as shown in Figure 2: a �ow of interest F1 interfered by two
overlapping other �ows F2 and F3. F2 and F3 have arrival curves α2 and α3.
The three servers each o�er a strict minimum service curve βi, i = 1, 2, 3. The

13

output �ows of each of the servers are denoted as in Figure 2. If α2 =
n∧

i=1

γri,bi

and α3 =
m∧

j=1

γr̂j ,b̂j
are piecewise linear concave arrival curves then

φ =
n∨

i=1

m∨

j=1

[
(β1 − γ̃ri,bi

)⊗ (
β2 − γri,0 − γr̂j ,0

)⊗
(
β3 − γ̃r̂j ,b̂j

)]+

constitutes a strict end-to-end service curve for the �ow of interest, in particular
F ∗∗∗1 ≥ F1 ⊗ φ. Here we use a new notation: γ̃r,b(t) =

{
γr,b(t) t 6= 0

b t = 0 .
Proof: Since β3 is a strict service curve we know from Lemma 4 that

∀t ≥ 0 : ∃u ≥ 0 :

(F ∗∗∗1 + F ∗∗∗3) (t) ≥ (F ∗∗1 + F ∗∗3) (t− u) + β3(u)

and t− u is the start of the last backlogged period at node 3.

=⇒ F ∗∗∗1 (t)− F ∗∗1 (t− u) ≥ β3(u)− (F ∗∗∗3 (t)− F ∗∗3 (t− u)) (1)

Along the same lines we can show for node 2 that ∀(t− u) ≥ 0 : ∃s ≥ 0 :
=⇒ F ∗∗1 (t− u)− F ∗1 (t− u− s) ≥ β2(s)

− (F ∗∗2 (t− u)− F ∗2 (t− u− s))− (F ∗∗3 (t− u)− F ∗3 (t− u− s)) (2)

and t − u − s is the start of the last backlogged period at node 2 and the
composed service at node 3 and 2.

And for node 1 that ∀(t− u− s) ≥ 0 : ∃r ≥ 0 :
=⇒ F ∗1 (t− u− s)− F ∗1 (t− u− s− r) ≥ β1(r)

− (F ∗∗2 (t− u− s)− F ∗2 (t− u− s− r)) (3)

and t−u− s− r is the start of the last backlogged period at node 1 and and
the composed service at node 1,2, and 3.

If we add up (1), (2), and (3) we obtain ∀t ≥ 0 : ∃u, s, r ≥ 0 :

F ∗∗∗1 (t)− F1(t− u− s− r) ≥ β1(r) + β2(s) + β3(u)

− (F ∗∗2 (t− u)− F2 (t− u− s− r))− (F ∗∗∗3 (t)− F3 (t− u− s))

and t− u− s− r is the start of the last backlogged period of the composed
service at node 1, 2, and 3. Now using the causality of the systems under
observation and the arrival curves for F2 and F3 we arrive at

F ∗∗∗1 (t)− F1(t− u− s− r) ≥ β1(r) + β2(s) + β3(u)

−α2(s + r)− α3(s + u)

14

≥ inf
r′, s′, u′ ≥ 0

r′ + s′ + u′ = s + u + r

{β1(r′) + β2(s′) + β3(u′)

−α2(s′ + r′)− α3(s′ + u′)}
= inf

r′, s′, u′ ≥ 0
r′ + s′ + u′ = s + u + r

{β1(r′) + β2(s′) + β3(u′)

−
n∧

i=1

γri,bi(s
′ + r′)−

m∧

j=1

γr̂j ,b̂j
(s′ + u′)





= inf
r′, s′, u′ ≥ 0

r′ + s′ + u′ = s + u + r





n∨

i=1

m∨

j=1

(β1(r′) + β2(s′) + β3(u′))

−γri,bi(s
′ + r′)− γr̂j ,b̂j

(s′ + u′)
}

=
n∨

i=1

m∨

j=1

inf
r′, s′, u′ ≥ 0

r′ + s′ + u′ = s + u + r

{β1(r′) + β2(s′) + β3(u′)

−γri,bi(s
′ + r′)− γr̂j ,b̂j

(s′ + u′)
}

(4)

The last equation is due to Lemma 3. Now we need to bring in the special shape
of the arrival curves being additively composable. In particular we have

γri,bi(s
′ + r′) =

{
γri,0(s

′) + γ̃ri,bi(r
′) s′ + r′ > 0

0 s′ + r′ = 0

γr̂j ,b̂j
(s′ + u′) =

{
γr̂j ,0(s′) + γ̃r̂j ,b̂j

(u′) s′ + u′ > 0
0 s′ + u′ = 0

Note that we have di�erent equivalent choices for the additive separation of the
token buckets. To return to (4) we need to distinguish four cases:
Case 1: s′+ r′ > 0 and s′+u′ > 0 ⇒ s+ r > 0 and s+u > 0 ⇒ either s > 0 or
r, u > 0. This corresponds to having a non-zero backlog at least at two of the
three nodes or at node 2, thus

F ∗∗∗1 (t)− F1(t− u− s− r)

≥
n∨

i=1

m∨

j=1

inf
r′, s′, u′ ≥ 0

r′ + s′ + u′ = s + u + r

{β1(r′) + β2(s′) + β3(u′)

−γri,0(s
′)− γ̃ri,bi(r

′)− γr̂j ,0(s′) + γ̃r̂j ,b̂j
(u′)

}

15

⊗
(
β3 − γ̃r̂j ,b̂j

)))
(u + s + r)

=




n∨

i=1

m∨

j=1

φi,j


 (u + s + r)

with φi,j = (β1 − γ̃ri,bi
) ⊗ (

β2 − γri,0 − γr̂j ,0

) ⊗
(
β3 − γ̃r̂j ,b̂j

)
for i = 1, . . . , n

and j = 1, . . . ,m.
Case 2: s′+r′ = 0 and s′+u′ = 0⇒ s+r = 0 and s+u = 0⇒ s = r = u = 0.

This corresponds to having a non-zero backlog for the composed service at time
t = t− u− s− r, thus

F ∗∗∗1 (t)− F1(t− u− s− r) = 0 ≥



n∨

i=1

m∨

j=1

φi,j


 (0)

=
n∨

i=1

m∨

j=1

−
(
bi + b̂j

)

Case 3: s′ + r′ > 0 and s′ + u′ = 0 ⇒ s + r > 0 and s + u = 0 ⇒ r > 0 and
s = u = 0. This corresponds to having a non-zero backlog only at node 1, thus

F ∗∗∗1 (t)− F1(t− u− s− r) ≥
n∨

i=1

{β1(r) + γ̃ri,bi(r)}

=
n∨

i=1

{β1(r)− rir − bi} ≥



n∨

i=1

m∨

j=1

φi,j


 (r)

=
n∨

i=1

m∨

j=1

{
β1(r)− rir − bi − b̂j

}

Case 4 : s′ + r′ = 0 and s′ + u′ > 0 ⇒ s + r = 0 and s + u > 0⇒ u > 0 and
s = r = 0. This corresponds to having a backlog only at node 3, thus (analogous
to Case 3)

F ∗∗∗1 (t)− F1(t− u− s− r) ≥
m∨

j=1

{
β3(u) + γ̃r̂j ,b̂j

(u)
}

≥



n∨

i=1

m∨

j=1

φi,j


 (u) =

n∨

i=1

m∨

j=1

{
β3(u)− r̂ju− b̂j − bi

}

Taking all four cases together we arrive at ∀t ≥ 0 : ∃u, s, r ≥ 0 :



n∨

i=1

m∨

j=1

φi,j


 (u + s + r) ≤ F ∗∗∗1 (t)− F1(t− u− s− r)

16

= F ∗∗∗1 (t)− F ∗∗∗1 (t− u− s− r)

The last equality is due to the fact that t − u − s − r is the start of the last
backlogged period for the service of the composed system. Since F ∗∗∗1 ∈ F we
obtain ∀t ≥ 0 : ∃u, s, r ≥ 0 :

F ∗∗∗1 (t)− F1(t− u− s− r) ≥






n∨

i=1

m∨

j=1

φi,j


 (u + s + r)




+

=
n∨

i=1

m∨

j=1

[φi,j(u + s + r)]+ = φ(u + s + r)

and t − u − s − r is the start of the last backlogged period of the composed
service system. Note that we used Lemma 1 for the last equality. According to
Lemma 4 this establishes φ as a strict end-to-end service curve for �ow 1.

ut
As we are dealing with piecewise linear convex service curves we provide a

corresponding application of Theorem 7 in the following corollary:
Corollary 1: (PMOO End-to-End Minimum Service Curve under Piece-

wise Linear Convex Nodal Service Curves) Under the assumptions of Theo-
rem 7, suppose the three servers o�er (strict) piecewise linear convex minimum
service curves β1 =

ni∨
i=1

βRi,Ti , β2 =
nj∨

j=1

βR̂j ,T̂j
, and β3 =

nk∨
k=1

βR̃k,T̃k
. With

α2 =
nl∧

l=1

γrl,bl
and α3 =

nm∧
m=1

γr̂m,b̂m
,

φ =
ni∨

i=1

nj∨

j=1

nk∨

k=1

nl∨

l=1

nm∨
m=1

βRi,j,k,l,m,Ti,j,k,l,m

with

Ri,j,k,l,m = (Ri − rl) ∧
(
R̂j − rl − r̂m

)
∧

(
R̃k − r̂m

)

and
Ti,j,k,l,m = Ti + T̂j + T̃k

+
bl + b̂m + rl

(
Ti + T̂j

)
+ r̂m

(
T̂j + T̃k

)

(Ri − rl) ∧
(
R̂j − rl − r̂m

)
∧

(
R̃k − r̂m

)

constitutes a strict (piecewise linear convex) end-to-end service curve for the
�ow of interest, in particular F ∗∗∗1 ≥ F1 ⊗ φ.

Proof: Substituting the actual service curves into the result from Theorem
7 gives

φ =
nl∨

l=1

nm∨
m=1

[(
ni∨

i=1

βRi,Ti − γ̃ri,bi

)
⊗

17




nj∨

j=1

βR̂j ,T̂j
− γri,0 − γr̂j ,0


⊗

(
nk∨

k=1

βR̃k,T̃k
− γ̃r̂j ,b̂j

)


+

=
ni∨

i=1

nj∨

j=1

nk∨

k=1

nl∨

l=1

nm∨
m=1

[(βRi,Ti
− γ̃ri,bi

)⊗

(
βR̂j ,T̂j

− γri,0 − γr̂j ,0

)
⊗

(
βR̃k,T̃k

− γ̃r̂j ,b̂j

)]+

=
ni∨

i=1

nj∨

j=1

nk∨

k=1

nl∨

l=1

nm∨
m=1

βRi,j,k,l,m,Ti,j,k,l,m

Here the �rst equation is due to Lemma 3 and the second equation is an
application of Rule 5 from Theorem 1 (note that in Theorem 1 we required the
functions to be ∈ F , yet the construction rule also holds for the type of functions
we have here).

ut
The generalization to an arbitrary number of nodes is notationally complex

but follows along the same line of argument as the three nodes with overlapping
interference scenario, therefore it is left out here. It had of course to be taken
into account for the implementation of the Network Calculator tool that will
be described in Section 5. The derivation of the end-to-end maximum service
curve is simple and given in the next lemma:

Lemma 7: (E2E Maximum Service Curve under Blind Multiplexing) Con-
sider a �ow R that traverses a sequence of systems Si, i = 1, . . . , n where it
is blindly multiplexed with an arbitrary number of �ows. Assume each of the
systems o�ers a nodal maximum service β̄i, ß = 1, . . . , n then �ow R is o�ered

β̄ =
n⊗

i=1

β̄i

as a maximum service on its path.
It is obvious that in the best case R is not interfered at any of the systems Si

and thus receives the nodal maximum service curve β̄i at each of its traversed
systems such that the overall maximum service curve β follows directly from
the basic concatenation result for maximum service curves in Theorem 4.

ut

5 Network Analysis Algorithms
In this section, we now present the algorithms to analyse networks of blind mul-
tiplexing nodes. We focus on the delay bound computation. The backlog bound
computation is analogous and just requires to compute the vertical deviation v
where for the delay the horizontal deviation h is calculated.

18

Algorithm 1 Straightforward Network Analysis
ComputeDelayBound (�ow of interest f)

forall nodes i ∈ path(f) starting at sink
forall pred(i)

αpred+= ComputeOutputBound(pred(i),
{�ows to node i from pred(i)}\{f})

βeff
i = [βi − αpred]

+

βSF =
⊗n

i=1 βeff
i

return h
(
αf , βSF

)

ComputeOutputBound(from node i, �ows F)
forall pred(i)

αpred+ =ComputeOutputBound(pred(i),
{�ows to node i from pred(i)}∩F)

αexcl+= ComputeOutputBound(pred(i),
{�ows to node i from pred(i)}\F)

βeff
i = [βi − αexcl]

+

return
((

αpred ⊗ β̄i

)® βeff
i

)
⊗ (

β̄i ⊗ δLi

)

5.1 Straightforward Network Analysis
This analysis is based on Theorem 5 and the way it is done is described on a
high level in Algorithm 1. It consists mainly of two procedures: One to compute
the delay bound for the �ow of interest using the nodal service curve under blind
multiplexing from Theorem 5 and convolving all nodal service curves to �nd the
end-to-end service curve for the �ow of interest which is then used to compute a
delay bound for the �ow. To be able to compute the nodal service curve, another
procedure is required which computes the output bound for all interfering �ows
at a certain node. This is a recursive procedure which needs to take into account
the e�ect of a general feed-forward network that even �ows which never share
a server with the �ow of interest may a�ect the �ow of interest transitively, by
interfering with a �ow which in turn interferes with the �ow of interest.

5.2 PMOO Network Analysis
This analysis is based on Theorem 7 and the way it is done is described in
Algorithm 2. It is more complicated than the straightforward analysis and
consists of three procedures. The simplest is the one computes the delay bound
and uses another procedure to compute the end-to-end service curve for the �ow
of interest according to Theorem 7. From the result it then calculates the delay
bound for the �ow of interest. The main complexity lies in the procedure to
compute the PMOO service curve. Initially, the path of the �ow of interest needs
to be prepared to enable an e�cient application of the PMOO result. At �rst,
�ows that join the �ow of interest several times are eliminated by introducing

19

fresh �ows for each later rejoin (with the arrival constraints of the original �ow
at that node in the network, of course). Next, parallel interfering �ows, i.e. �ows
that have the same ingress and egress nodes, are merged together into a �ow
set which is treated as one �ow for the computation of the service curve. The
merging helps to keep the procedure as e�cient as possible, since fewer �ows
have to be taken into account. However, care must be taken when computing
the arrival constraints for each of the �ow sets, since the �ows contained in a
set are generally not in parallel throughout the whole network. This is done
by a separate procedure which we will discuss in a moment. After the arrival
constraints of each of the �ow sets have been computed, Theorem 7 is applied
to compute the desired end-to-end PMOO service curve. This statement sounds
harmless, however the computation of the maximum over all token buckets of the
piecewise linear arrival curves of interfering �ows and rate-latency functions of
the piecewise linear service curve of the nodes on the path of the �ow of interest
can be a computationally intensive task. We come back to this issue in the next
subsection. The last procedure serves to compute the output bound of a �ow
set behind a given node. Here, the PMOO result is reused as much as possible
by �rst �nding the sub-path shared by all �ows in the �ow set, respectively the
node where the �ow set splits. From that split point the procedure recurs on
itself for each of the smaller �ow sets after the split point. With the sum of
those output bounds after the split point, the procedure now calls in indirect
recursion the procedure for the computation of the PMOO service curve for the
shared path of the �ow set. Furthermore, the maximum service curve according
to Lemma 6 is calculated. Together, minimum and maximum service curve are
applied to calculate the output bound according to Lemma 4.

5.3 Computational E�ort Reduction
As brie�y pointed out in the preceding section, the computational e�ort for the
PMOO analysis can be prohibitive as it grows exponentially with the number
of interfering �ows. This is due to the maximum computation from Theorem
7 that needs to be done for each combination of token buckets of the piecewise
linear concave interfering �ows and rate latency functions of the servers' piece-
wise linear convex service curves. Let us assume for this discussion that the
nodes use simple rate latency functions such that those do not contribute to the
combinatorial explosion. While this assumption will often hold in practice, it
is possible, if not even very likely, for the arrival curves of the interfering �ows
to be composed of several token buckets due to the way the maximum service
curve a�ects the burstiness of �ows. Then the number of combinations for the
computation of the PMOO service curve equals

∏f
j=1 nj , where f is the number

of interfering �ows and nj is the number of token buckets of which interfering
�ow j is composed. For instance, if all of the arrival curves of interfering �ows
consist of two token buckets when joining the �ow of interest (not when they
enter the network), then the number of combination is 2f . The basic PMOO
analysis algorithm already reduces the number of combinations by merging par-
allel �ows. This does not a�ect the computation of the bound. However, we can

20

Algorithm 2 PMOO Network Analysis
ComputeDelayBound (�ow of interest f)

let p be the path of the �ow of interest f
βPMOO= ComputePMOOServiceCurve(p, {f})
return h

(
αf , βPMOO

)

ComputePMOOServiceCurve(path p, �ows F)
eliminate rejoining interfering �ows
merge parallel interfering �ows into �owsets Fi

forall interfering �owsets Fi

forall pred(nFi
) of the ingress node nFi

of Fi

αFi
+= ComputeOutputBound(pred(nFi

), Fi)
calculate βPMOO using αFi according to Corollary 1
return βPMOO

ComputeOutputBound(from node i, �ows F)
�nd shared path p of �ows in F starting at node i
call s the last node on path p (→split point)
forall pred(s)

αs+= ComputeOutputBound(pred(s),
{�ows to node s from pred(s)}∩F)

βPMOO
p = ComputePMOOServiceCurve(p, F)

calculate β̄PMOO
p according to Lemma 6

return
((

αsplit ⊗ β̄PMOO
p

)® βPMOO
p

)⊗ (
β̄PMOO

p ⊗ δLp

)

go further in reducing the computational e�ort if we accept some degradation
of the PMOO analysis.

There are two interesting techniques for directly reducing the computational
e�ort of the maximum operation from Theorem 7 by decreasing the number of
combinations to be computed (both can be invoked in procedure ComputeOut-
putBound in Algorithm 2 just before βPMOO is calculated):

Flow Prolongation. The idea of this technique is that �ows can be pro-
longed (of course, only for the analysis) such that they can be merged with
other �ows. Thus the number of combinations is reduced, for instance, from 2f

to 2f−1 for each �ow that is prolonged. A �ow prolongation incurs some cost
as the �ow consumes more resources at the servers it now traverses in addition
depending on the latency of the servers and the rate of the �ow. Often, this
cost is small (and zero for a constant rate server). We therefore included that
computational reduction technique into our PMOO analysis by accepting all
�ow prolongations that are below a certain �charge� starting with the shortest
possible.

Arrival Curve Approximation. The idea of this technique is to reduce
the complexity of the tra�c descriptions of the interfering �ows, i.e. to de-
crease the nj , without compromising the arrival constraints of the interfering
�ows. Taken to the extreme we could represent each interfering �ow with a

21

single token bucket, the one with the highest bucket depth and the lowest rate
which would result in only a single combination that has to be computed. This
would certainly be too much computational e�ort reduction at a potentially high
degradation of the bounds. Therefore, we try to eliminate those linear segments
from the arrival curves of interfering �ows that have the least impact on their
shape. To achieve, this we sort all segments in descending order of their y-range
and only take a speci�ed number of segments for the further calculation. Note
that we do this globally over all segments of arrival curves of interfering �ows
and not per arrival curve to ensure that over-complex modelling is reduced at
the right place. The target number of segments we keep is set to a selectable
average number of segments per arrival curve times the number of interfering
�ows. This allows to reduce the computational e�ort in a controlled manner
while degrading the bounds as little as possible.

Apart from these two techniques there is another option: restricting the
recursion depth of the output bound computation. That means at a de�ned
recursion depth we stop to use the PMOO-speci�c procedure to compute the
output bound and use the straghtforward analysis speci�c computation of the
output bound instead. The latter avoids the combinatorial explosion from that
recursion level on. For example, if the maximum recursion depth is set to 1,
then we e�ectively do not use the PMOO result to compute the output bound
but just use it to compute the service curve for the �ow of interest.

6 Numerical Experiments
To validate and evaluate the proposed methods for computing performance
bound in blind multiplexing networks we have implemented a toolbox called
DISCO Network Calculator. This toolbox is more generally usable than just
for the analysis of networks of blind multiplexing nodes. For instance, we
have also implemented FIFO service curves for general piecewise concave ar-
rival curves and piecewise linear convex service curves. The DISCO Network
Calculator, which is written in JavaTM , is publicly available1 and may hope-
fully be of use for other researchers interested in network calculus.

6.1 Experimental Design
In order to create a representative network we used the BRITE topology gen-
erator with the following recommended parameter settings: 2-level-top-down
topology type with 10 ASes with 10 routers each, Waxman's model with α =
0.15, β = 0.2, and random node placement with incremental growth type. The
diameter of the generated topology is 11 hops. Hosts are created randomly at
access routers: 30% random routers in each AS get a uniform random number
of hosts between 1 and 5.

This topology is then transformed into a feed-forward network using the
turn-prohibition algorithm. The turn-prohibition algorithm resulted in a change

1http://disco.informatik.uni-kl.de/content/Downloads

22

of 13% of the shortest path routes with an average change of 1.9 hops and
a standard deviation of 1.2. So, altogether the routes were changed only by
0.25 hops on average. This can be considered a success for the turn-prohibition
algorithm, because it was able to transform this general network with a diameter
of 11 into a feed-forward network. Thus it is now suitable to be analysed by
the methods presented in Section ?? for all possible network utilizations ≤ 1,
whereas if it had been analysed as a general network using, e.g., the bound from
[7] it could have been analysed only for utilizations below 10% (according to
Theorem 2.1), so we are in a much better position now without paying a high
cost in excessive route prolongation.

Now, for each source a �ow is generated towards a randomly assigned sink.
Each �ow's arrival curve is drawn from a set Sα of candidate arrival curves.
Speci�cally, for this investigation we restricted the set members to token buckets.
The minimum service curves were restricted to be rate-latency functions. These
provide 1 of 3 rates: C, 2C, or 3C, where C is chosen such that the most loaded
link can carry its load (plus a margin of 10%) and for the other links the rate is
chosen closest to their carried load. The latency is chosen to be 10ms network-
wide. If a maximum service curve is used its latency is set to zero and its rate
equal to the rate of the corresponding nodal minimum service curve.

6.2 PMOO Analysis vs. Straightforward Analysis
One of the goals of the more comprehensive this study in was to �nd out how
the straightforward analysis and the PMOO analysis compare to each other.
We perform this comparison for two di�erent tra�c scenarios, one with low
burstiness (Sα =

{
γr,0.05[s]r

}
, with r = 10 Mbit/s) and the other one with

signi�cantly higher burstiness (Sα =
{
γr,0.05[s]r, γr,0.25[s]r, γr,0.5[s]r

}
, with r = 10

Mbit/s). Furthermore, we want to isolate the e�ects by (1) the service curve
computation using the PMOO principle, (2) the output bound computation
using the PMOO principle, and (3) the maximum service curve in its improved
version according to Lemma 3.3. We use all available sinks for �ow generation
and compute 10 replications with di�erent seeds. The results can be found in
Figure 3. First we take a look at the e�ect of the PMOO service curve alone: It
is considerably better than its straightforward counterpart for both low and high
burstiness of the tra�c. As expected, the burstier tra�c incurs higher absolute
delays, but the percentage of improvement is roughly the same for both types
of �ows: ≈ 66 ± 6.5% at a 95% level of con�dence. When the PMOO output
bound is used this gives a further signi�cant improvement of ≈ 13% for the
PMOO analysis (for both tra�c types). When the maximum service curve is
used this reduces the bounds by another ≈ 16%. The maximum service curve
also improves the straighforward analysis by ≈ 35% (low) and ≈ 45% (high) and
thus keeps its promise to be valuable for a good delay bound analysis although
it leads to more complex models.

23

0

5

10

15

20

25

30

35

40

low high low high low high

Standard OB, no Max SC PMOO-OB, no Max SC PMOO-OB, Max SC

d
e

la
y

 b
o

u
n

d
 [

s
]

SFA

PMOOA

Figure 3: PMOO analysis vs. straighforward analysis in turn-prohibited net-
works.

7 Conclusion
In this report, we have presented a comprehensive set of methods to address the
issue of computing performance bounds in feed-forward networks under blind
multiplexing assumptions. Starting from the derivation of the basic operations
for piecewise linear arrival and service curves required for the network analysis,
we derived an interesting result on a novel way to compute the end-to-end ser-
vice curve for a �ow of interest under blind multiplexing, again for the pretty
general case of piecewise linear arrival and service curves. Equipped with these
results we presented algorithms for the network analysis for a straightforward
technique based on existing results and a technique based on our new results.
We demonstrated that in realistic environments the new bounds can be signi�-
cantly better, reducing the existing bounds by at least 50% in our scenarios. A
drawback of these bounds is their potentially high computational e�ort if the
model sophistication is high, i.e. either sources have already complicated tra�c
descriptions or maximum service curves generate complex tra�c �ows inside
the network. While often in theory such complexities are avoided due to their
inelegance this may lead to much looser bounds than necessary. In fact, we are
quite happy with our approach of allowing that complexity during the modelling
phase and only during the computation of the bounds the complexity is reduced
in a way to minimally impact the quality of the bounds.

References
[1] R. Agrawal, R. L. Cruz, C. Okino, and R. Rajan. Performance bounds for

�ow control protocols. IEEE/ACM Transactions on Networking, 7(3):310�
323, June 1999.

24

[2] M. Andrews. Instability of �fo in session-oriented networks. In Proc. SODA,
pages 440�447, March 2000.

[3] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchronization and
Linearity: An Algebra for Discrete Event Systems. Probability and Math-
ematical Statistics. John Wiley & Sons Ltd., West Sussex, Great Britain,
1992.

[4] C.-S. Chang. Stability, queue length and delay of deterministic and
stochastic queueing networks. IEEE Transactions on Automatic Control,
39(5):913�931, May 1994.

[5] C.-S. Chang. On deterministic tra�c regulation and service guarantees:
A systematic approach by �ltering. IEEE Transactions on Information
Theory, 44(3):1097�1110, May 1998.

[6] C.-S. Chang. Performance Guarantees in Communication Networks.
Telecommunication Networks and Computer Systems. Springer-Verlag,
London, Great Britain, 2000.

[7] A. Charny and J.-Y. Le Boudec. Delay bounds in a network with aggregate
scheduling. In Proc. QofIS, pages 1�13, September 2000.

[8] F. Ciucu, A. Burchard, and J. Liebeherr. A network service curve approach
for the stochastic analysis of networks. In Proc. ACM SIGMETRICS, pages
279�290, June 2005.

[9] R. L. Cruz. A calculus for network delay, Part I: Network elements in iso-
lation. IEEE Transactions on Information Theory, 37(1):114�131, January
1991.

[10] R. L. Cruz. A calculus for network delay, Part II: Network analysis. IEEE
Transactions on Information Theory, 37(1):132�141, January 1991.

[11] R. L. Cruz. Quality of service guarantees in virtual circuit switched net-
works. IEEE Journal on Selected Areas in Communications, 13(6):1048�
1056, August 1995.

[12] R. L. Cruz. SCED+: E�cient management of quality of service guarantees.
In Proc. IEEE INFOCOM, volume 2, pages 625�634, March 1998.

[13] M. Fidler. Extending the network calculus pay bursts only once principle
to aggregate scheduling. In Proc. QoS-IP, pages 19�34, February 2003.

[14] M. Fidler and V. Sander. A parameter based admission control for di�er-
entiated services networks. Computer Networks, 44(4):463�479, 2004.

[15] Y. Jiang. Delay bounds for a network of guaranteed rate servers with �fo
aggregation. Computer Networks, 40(6):683�694, 2002.

25

[16] J.-Y. Le Boudec. Application of network calculus to guaranteed service
networks. IEEE Transactions on Information Theory, 44(3):1087�1096,
May 1998.

[17] J.-Y. Le Boudec and A. Charny. Packet scale rate guarantee for non-�fo
nodes. In Proc. IEEE INFOCOM, pages 23�26, June 2002.

[18] J.-Y. Le Boudec and P. Thiran. Network Calculus A Theory of Determin-
istic Queuing Systems for the Internet. Number 2050 in Lecture Notes in
Computer Science. Springer-Verlag, Berlin, Germany, 2001.

[19] L. Lenzini, E. Mingozzi, and G. Stea. Delay bounds for �fo aggregates: A
case study. In Proc. QofIS, pages 31�40, February 2003.

[20] Radia Perlman. Interconnections (2nd ed.): bridges, routers, switches, and
internetworking protocols. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2000.

[21] H. Sariowan, R. L. Cruz, and G. C. Polyzos. Scheduling for quality of
service guarantees via service curves. In Proc. IEEE ICCCN, pages 512�
520, September 1995.

[22] J. Schmitt and U. Roedig. Sensor network calculus - a framework for worst
case analysis. In Proc. DCOSS, pages 141�154, June 2005.

[23] D. Starobinski, M. Karpovsky, and L. A. Zakrevski. Application of net-
work calculus to general topologies using turn-prohibition. IEEE/ACM
Transactions on Networking, 11(3):411�421, 2003.

[24] I. Stoica, H. Zhang, and T. S. E. Ng. A hierarchical fair service curve
algorithm for link-sharing, real-time and priority services. In In Proc. ACM
SIGCOMM, pages 249�262, September 1997.

[25] G. Urvoy-Keller, G. Hébuterne, and Y. Dallery. Tra�c engineering in a
multipoint-to-point network. IEEE Journal on Selected Areas in Commu-
nications, 20(4):834�849, May 2002.

[26] S. Wang, D. Xuan, R. Bettati, and W. Zhao. Providing absolute di�erenti-
ated services for real-time application in static-priority scheduling networks.
In Proc. IEEE INFOCOM, pages 669�678, April 2001.

[27] Z.-L. Zhang, Z. Duan, and Y. T. Hou. Fundamental trade-o�s in aggregate
packet scheduling. In Proc. ICNP, pages 129�137, November 2001.

26

