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Abstract. Network calculus has been proposed and customized as a
framework for worst case analysis in wireless sensor networks in [1]. It
has been demonstrated that this so-called sensor network calculus is an
e�ective means to calculate maximum message transfer delays, maximum
bu�er requirements at the sensor nodes as well as lower bounds on duty
cyles. Yet, so far only a single sink was accomodated for in the respective
models. In this paper, we describe how sensor network calculus can be
enhanced to also cover scenarios involving multiple sinks.

1 Introduction

Decisions in daily life are based on the accuracy and availability of informa-
tion. Sensor networks can signi�cantly improve the quality of information as
well as the ways of gathering it. For example, sensor networks can help to get
higher �delity information, acquire information in real time, get hard-to-obtain
information, and reduce the cost of obtaining information. Therefore it is com-
monly assumed that sensor networks will be applied in many di�erent areas in
the future and that they can be viewed as an important part in the vision of
ubiquitous/pervasive computing [2].

Application areas for sensor networks might be production surveillance, traf-
�c management, medical care, or military applications. In these areas it is crucial
to ensure that the sensor network is functioning even in a worst case scenario.
If a sensor network is used for example for production surveillance, it must be
ensured that messages indicating a dangerous condition are not dropped. If func-
tionality in worst case scenarios cannot be proven, people might be in danger
and the production system might not be certi�ed by authorities.

As it may be di�cult or even impossible to produce the worst case in a real
world scenario or in a simulation in a controlled fashion, an analytical framework
is desirable that allows a worst case analysis in sensor networks. Network calcu-
lus [3] is a relatively new tool that allows worst case analysis of packet-switched
communication networks. In [1] a framework for worst case analysis of wireless
sensor networks based on network calculus is presented and called sensor network
calculus. However, it can only be considered a �rst step towards a comprehen-
sive worst case analysis framework for WSNs. One particular restriction is with
respect to the number of sinks in the WSN: a single sink model is assumed. This
is restrictive especially for larger scale WSNs. To have more sinks is bene�cial



for the information transfer delay as well as for the energy consumption of the
sensor nodes since a sink can be reached faster respectively in less hops.

2 Sensor Network Calculus: The Single Sink Case

In this introductory section we use the notation and the basic results provided in
[3], furthermore a single sink communication pattern is assumed at �rst. Within
the tra�c that is modeled only the sensor reports are taken into account. Tra�c
generated from the base station towards the nodes is explicitly neglected. This
is considered feasible based on the assumption that the tra�c �owing towards
the sensors is magnitudes lower than tra�c caused by the sensing events. Fur-
thermore, it is assumed that the routing protocol being used forms a tree in the
sensor network. Hence N sensor nodes arranged in a directed acyclic graph are
given.

Each sensor node i senses its environment and thus is exposed to an input
function Ri corresponding to its sensed input tra�c. If sensor node i is not a
leaf node of the tree then it also receives sensed data from all of its child nodes
child(i, 1), . . . , child(i, ni), where ni is the number of child nodes of sensor node
i. Sensor node i forwards/processes its input which results in an output function
R∗i from node i towards its parent node.

Now the basic network calculus components, arrival and service curve, have
to be incorporated. First the arrival curve ᾱi of each sensor node in the �eld has
to be derived. The input of each sensor node in the �eld, taking into account its
sensed input and its childrens' input, is:

R̄i = Ri +
ni∑

j=1

R∗child(i,j) (1)

Thus, the arrival curve for the total input function for sensor node i is:

ᾱi = αi +
ni∑

j=1

α∗child(i,j) (2)

2.1 Maximum Sensing Rate Arrival Curve

The simplest option in bounding the sensing input at a given sensor node is
based on its maximum sensing rate which is either due to the way the sensing
unit is designed or limited to a certain value by the sensor network application's
task in observing a certain phenomenon. For example, it might be known that
in a temperature surveillance sensor system, the temperature does not have to
be reported more than once per second at most. The arrival curve for a sensor
node i corresponding to simply putting a bound on the maximum sensing rate
is

αi(t) = pit = γpi,0(t) (3)



Note that the assumption is made that each sensor node has its individual
arrival curve respectively maximum sensing rate.

This arrival curve can be used in situations where all sensor nodes are set up
to periodically report the condition in a sensor �eld. The set of sensible arrival
curve candidates is certainly larger than the arrival curves described above. The
more knowledge on the sensing operation and its characteristics is incorporated
into the arrival curve for the sensing input the better the worst case bounds
become. We consider it a strength of the sensor network calculus framework
that it is open with respect to arbitrary arrival curves.

2.2 Rate-Latency Service Curve

Next, the service curve has to be speci�ed. The service curve depends on the
way packets are scheduled in a sensor node which mainly depends on link layer
characteristics. More speci�c, the service curve depends on how the duty cycle
and therefore the energy-e�ciency goals are set.1

The service curve captures the characteristics with which sensor data is for-
warded by the sensor nodes towards the sink. It abstracts from the speci�cs and
idiosyncracies of the link layer and makes a statement on the minimum service
that can be assumed even in the worst case.

A typical and well-known example of a service curve from traditional tra�c
control in a packet-switched network is

βR,T (t) = R [t− T ]+ (4)

where the notation [x]+ equals x if x ≥ 0 and 0 otherwise. This is often
also called a rate-latency service curve. The latency term nicely captures the
characteristics induced by the application of a duty cycle concept. Whenever
the duty cycle approach is applied there is the chance that sensed data or data
to be forwarded just arrives after the last duty cycle (of the next hop!) is just over
and thus a �xed latency occurs until the forwarding capacity is available again.
In a simple duty cycle scheme this latency would need to be accounted for for
all data transfers. For the forwarding capacity it is assumed that it can be lower
bounded by a �xed rate which depends on transceiver speed, the chosen link
layer protocol and the duty cycle. So, with some new parameters the following
service curve at sensor node i is obtained:

βi(t) = βfi,li(t) = fi[t− li]+ (5)

Here fi and li denote the forwarding rate and forwarding latency for sensor
node i.
1 The service curve might further depend on whether more advanced sensor network
characteristics like in-network processing, e.g. for aggregation or even prioritization
of some tra�c is provided.



2.3 Network Flow Analysis

Finally, the output of sensor node i, i.e. the tra�c which it forwards to its parent
in the tree, is constrained by the following arrival curve:

α∗i = ᾱi ® βi =


αi +

ni∑

j=1

α∗child(i,j)


® βi (6)

In order to calculate a network-wide characteristic like the maximum informa-
tion transfer delay or local bu�er requirements especially at the most challenged
sensor node just below the sink (which is called node 1 from now on) an iterative
procedure to calculate the network internal �ows is required:

1. Let us assume that arrival curves for the sensed input αi and service curves
βi for sensor node i, i = 1, . . . , N , are given.

2. For all leaf nodes the output bound α∗i can be calculated according to (6).
Each leaf node is now marked as �calculated�.

3. For all nodes only having children which are marked �calculated� the output
bound α∗i can be calculated according to (6) and they can again be marked
�calculated�.

4. If node 1 is marked �calculated� the algorithm terminates, otherwise go to
step 3.

After the network internal �ows are computed according to this procedure, the
local per node delay bounds Di for each sensor node i can be calculated according
to a basic network calculus result [3, chapter 1]:

Di = h(ᾱi, βi) = sup
s≥0

{inf{τ ≥ 0 : ᾱi(s) ≤ βi(s + τ)}} (7)

To compute the total information transfer delay D̄i for a given sensor node
i the per node delay bounds on the path P (i) to the sink need to be added:

D̄i =
∑

i∈P (i)

Di (8)

The maximum information transfer delay in the sensor network can then
obviously be calculated as D̄ = maxi=1,...,N D̄i. Note that this kind of analysis
assumes FIFO scheduling at the sensor nodes which however should be the case
in most practical cases.

3 Sensor Network Calculus: The Multiple Sink Case

The basic setting as well as the calculation procedure can be recovered from
the single sink case. However, the network �ow analysis is considerably more
involved in the multiple sink case. When a speci�c �ow of interest between a
given source and sink shall be analysed, the e�ect of cross-tra�c from other



Algorithm 1 Multiple Sink Network Flow Analysis
ComputeOutputBound(from node i, �ows F)

forall pred(i)
αpred

i += ComputeOutputBound(pred(i), {�ows to node i from pred(i)}∩F)
αexcl += ComputeOutputBound(pred(i), {�ows to node i from pred(i)}\F)

�nd θopt such that βeff
i = maxθ≥0 {βi (t)− αexcl (t− θ)} is maximal

return αpred
i ® βeff

i

ComputeDelayBound (�ow of interest f)
ComputeOutputBound(sink of f , pred(sink of f))
delaytotal = 0.0
forall nodes i on the path from source to sink of f

delaytotal+ = h
ş
αpred

i , βeff
i

ť

return delaytotal

�ows to di�erent sinks has to be taken into account. Here we can draw upon
a known network calculus result telling us how to model the service curve of a
FIFO node under cross-tra�c from other �ows [3, chapter 6]:

Theorem 1. (FIFO Nodal Service Curve) Consider a FIFO node multiplexing
two �ows 1 and 2. Assume that the node guarantees a strict minimum service
curve β to the aggregate of the two �ows. Assume that �ow 2 has α2 as an arrival
curve. De�ne the family of functions

β1
θ (t) = [β (t)− α2 (t− θ)]+ 1{t>θ}

Then for any θ ≥ 0 �ow 1 is guaranteed a service β1
θ (if β1

θ is wide-sense in-
creasing). Here, the indicator function 1{cond} is de�ned as 1 if cond is true and
0 otherwise.

Theorem 1 now enables the derivation of sink-speci�c service curves for each
node on the path between source and sink for a certain �ow of interest. The
detailed algorithms (yet still on a high level) to perform the network analysis
for the multiple sink case are given in Algorithm 1. First we have to recursively
compute the output bounds of all sensor nodes on the path from source to sink
(starting the recursion at the sink). Here, we sum all tra�c of �ows joining the
�ow of interest and having the same sink as the �ow of interest (that is the same
step as in the single sink case). Next we sum all cross-tra�c that joins the �ow
of interest but also leaves it again on the way to a sink di�erent from that of the
�ow of interest. The reduction in the service curve guarantee by a given node on
the path of the �ow of interest is then calculated based on Theorem 1 using the
cross-tra�c (bounded by αexcl) and the nodal service curve βi. This involves a
search for the θ which gives an optimum e�ective service curve βeff

i for the �ow
of interest (and its joining tra�c from other sources towards the same sink). The
mathematical details of how to �nd that optimum value are out of scope of this
paper, but it may be mentioned that the actual calculation is simple to perfom.
At the end of the output bound computation, the min-plus deconvolution of the



overall tra�c towards the sink of the �ow of interest (bounded by αpred
i ) and

the e�ective service curve of the given node βeff
i is computed.

For each node on the path of the �ow of interest the e�ective service curves
βeff

i and the bound on the overall tra�c towards the sink of the �ow of interest
αpred

i are stored. These are then used in the delay bound computation which
now works its way up starting from the source of the �ow of interest to its sink.
At each node the horizontal deviation between αpred

i and βeff
i (i.e. the per-hop

delay bound) is calculated and summed up resulting in the end-to-end delay for
the �ow of interest.

So now we can calculate the worst case delay characteristics for any �ow of
interest in the wireless sensor network at hand. Of course, if we wanted to �nd
the absolute worst case delay in the wireless sensor network we could do the
above calculation for each such �ow of interest. Yet, not all of these calculations
have to be done since some �ows of interest would only be sub�ows of others and
we could make the computation more e�cient by only calculating the �longest�
�ows of interest.

4 Multiple Sink Sensor Network Calculus at Work

In this section some numerical examples for the previously presented sensor
network calculus framework are described. These examples are chosen with the
intention of describing realistic and common application scenarios, yet they are
certainly simplifying matters to some degree for illustrative purposes.

The goal of this section is to show how sensor network clalculus may be able
to shed some light upon how the number of sinks a�ects the worst case message
transfer delay in typical wireless sensor networks. The experimental setup is as
follows: we assume a �at sqare of 100x100 m2 on which the sensor nodes are
randomly distributed (that means their x- and y-coordinates are chosen from a
uniform random distribution over [0,100]). Each sensor has a transmission range
of 20 meters. The routing from the sensors to the sinks is done based on shortest
paths from sensors to sinks, each sensor node is associated with its nearest sink.
The sinks are randomly chosen from the sensor nodes (which e�ectively releases
them from being sensor nodes). Initially we create 100 nodes and then designate
the respective number of sinks for the given experiment. The sensor node models
we use mimic Mica-2 sensors [4] running TinyOS. In particular we assume a duty
cyle of 1% which results in a latency of 1.096 s and a forwarding rate of 258 b/s.
Furthermore, we assume a periodic sensing task: each sensor sends a 36 byte
TinyOS packet every 30 seconds.

The results of the experiments, i.e. the worst-case delay calculation for each
sensor node based on the algorithms in the preceding section, with di�erent
number of sinks are shown in Figure 1. Here we show for 1, 5, and 10 sinks
in the sensor �eld the worst case delay distribution over all possible �ows of
interest in the form of histograms where each bar gives the number of �ows in
intervals of duration 1 s. Note that for some �ows there may not exist a �nite
delay (represented by the last bar in the histograms) since under worst case
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Fig. 1. Worst Case Delay Distribution for Di�erent Numbers of Sinks.

conditions the amount of incoming tra�c of a node on the path of that �ow
may be higher than its forwarding rate. This is actually the case for 36 �ows
in the single sink scenario, but even when using 5 sinks there are still 30 �ows
with in�nite delay bound. Only when we are using 10 sinks we receive �nite
delay bounds for all of the �ows. Hence, we see that under these conditions
sensor network calculus could help to correctly dimension the number of sinks
in the wireless sensor network in order to control the message transfer delay
performance of the network. In fact, in further experiments we found 6 sinks to
be su�cient to ensure that no in�nite delay bounds occured. It can be clearly
seen from Figure 1 how the delay distribution improves with the number of sinks
used in the sensor �eld. In fact, the average worst case delay improves from from
9.58 to 3.34 to 1.82 s for the 1, 5, and 10 sink scenario, respectively (not counting



the �ows with in�nite delay bounds for the 1 and 5 sink case, of course). So again
we see how sensor network calculus may advise us to �nd the number of sinks
that we shall use in order to receive a certain message tranfer delay performance.

5 Related Work
In fact, there is not much work directly related to our proposal of using network
calculus as a framework for the performance analysis of wireless sensor networks.
Apart from our previous work in [1] and the work in [5] network calculus has so
far not been used as tool in the context of wireless sensor networks. Actually,
we hope that the community will eventually discover its great potential. The
work described in [5] is a decidedly di�erent issue of congestion control in sensor
networks which however is also treated with the aid of network calculus.

6 Conclusion and Outlook
In summary, we believe that sensor networks will be used in the future for crit-
ical applications. In this case the sensor network must be properly dimensioned
and controlled for all, even worst case, scenarios to ensure continuous and safe
operation. The presented sensor network calculus framework is a �rst (promis-
ing) step towards such a proper dimensioning methodology of wireless sensor
networks. In particular we have gone beyond [1] and showed how the multiple
sink case in wireless sensor networks would be treated in the sensor network
calculus framework.

There are many opportunities for future work. An incomplete list is the
following: the stochastic nature of wireless communications needs to be incorpo-
rated into the models, mobility of sensor nodes and sinks should be accomodated,
topology control and routing algorithms should be made aware of their e�ects
on worst case characteristics, and so on. Apart from these issues the presented
framework should also be validated by packet-level simulations in order to in-
crease the �delity in the predictive power of our models. Especially this last point
deserves our immediate attention and is already currently under investigation.
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