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Abstract: In this paper, we derive worst case bounds on delay and
backlog for non-preemptive priority queueing systems using net-
work calculus. There are known results for the average behaviour
of non-preemptive priority queueing systems from traditional
queueing theory. By use of numerical investigations, we compare
our worst case bounds to those average behaviour results in order
to give a feel as to how conservative the worst case bounds are.

A practical application of our results is given for DiffServ-based
networks which use simple priority queueing to differentiate sever-
al traffic classes by assigning them different delay targets.

1 INTRODUCTION

1.1 Motivation

In providing multiple services in a single network there is two
great directions which could be labelled by Quality of Service
(QoS) and Class of Service (CoS).

With QoS usually some sort of per-flow queueing is associat-
ed which allows to give exact performance guarantees and al-
lows to emulate flow isolation. The latter fact allows to some
degree to apply basic queueing theory results for average case
behaviour of a flow and there is a well established theory, net-
work calculus [1], for analysing worst case behaviour. The
drawback of per-flow traffic control mainly is that it runs into
scalability problems in high multiplexing environments and is
usually considered infeasible for the backbone of large net-
works as, e.g., the Internet [2].

By CoS, a class-based differentiation between traffic is
meant. The associated per-class queueing achieves high scala-
bility by supporting only a limited number of traffic classes in
the network. Within one class flows compete for the available
resources in that class. This makes the derivation of perform-
ance guarantees more difficult. In particular there is to our
knowledge no results on worst case behaviour, while there are
some results for the average behaviour under Markovian traffic
assumptions.

Note that sometimes CoS is considered as subset of QoS, but
for the sake of contrasting the per-flow and per-class traffic
control approach we use these two terms (as it is often done in
the literature).

There are several alternatives for scheduling the different
classes in a class-based packet network, the simplest variant is
to give non-preemptive priority to packets belonging to more
important classes (numerically lower). This is, in the realm of
queueing systems, usually called non-preemptive priority
queueing. Due to its simplicity non-preemptive priority sched-
uling is usually implemented on today’s routers.

There is two great tools or methods to investigate perform-
ance in packet networks: queueing theory [3] and network cal-
culus [1]. Queueing theory allows to examine the average case
behaviour, whereas network calculus is concerned with worst
case behaviour. Seldom, are they used in the same context since
their “supporters” usually consider themselves belonging to dif-
ferent “camps”.

We use both of them in order to analyse and compare average
and worst case behaviour of non-preemptive priority queueing
for class-based packet networks. However with respect to aver-
age behaviour we draw upon known queueing theory results
whereas for the worst case behaviour we derive bounds which
have not been published so far, to the best of our knowledge.

1.2 Priority-based Class-of-Service Packet Networks
Non-preemptive priority queueing, which is available in many
router products (e.g., in Cisco routers it is available under the
label LLQ (Low Latency Queueing) [4]), provides some en-
hancement to traffic management. A priority queueing mecha-
nism adds the ability to sort packets based on differences in
"priority" and insert them into separate internal queues or shuf-
fle their insertion within a single queue. The forwarding algo-
rithm always transmits packets of the highest priority first. If
there are no packets of the highest priority level, the next high-
est priority queue is serviced, and so on.

The priorities in this type of queueing are absolute, i.c., if
there is sufficient high priority traffic to saturate a link, all low-
er priority traffic is locked out. This can be a considerable prob-
lem, since some protocols attempt to use the entire available
resource. For example, in the absence of competing traffic, a
greedy TCP data flow will attempt to maximize its throughput
and use all of the available capacity. Thus, a single TCP data
flow with a higher priority can lock out all other flows for the
duration of the TCP connection. In light of the potential for
lower priority traffic to be locked out, great care must be taken
when assigning priority levels. The solution to this problem is
to enforce bounds on the use of the higher priority classes which
means to exert traffic regulation for high priority traffic.

1.3 Contribution

The contributions of this work are in the derivation of results for

the worst case behaviour in non-preemptive priority queueing:

» the service curves for each traffic class for non-preemptive
priority queueing are derived,

* based on the service curves bounds on delay and buffer
requirements for each class are derived.

Besides the new results, we perform a comprehensive compari-

son between known queueing theoretical results for the average



behaviour in Markovian non-preemptive priority queueing sys-
tems with our newly derived worst case results.

1.4 Outline

The rest of the paper is structured as follows:

In Section 2, we recapitulate the known results for average
behaviour in non-preemptive priority queueing systems under
the assumption of Poisson arrivals and generally distributed
service times. In Section 3, the worst case behaviour in non-
preemptive priority queueing systems is analysed using net-
work calculus (which is also briefly introduced). After a general
derivation of the service curve for each traffic class we derive
worst case delay and backlog in each class for the case of token
bucket regulated input to the classes. In Section 4, a compre-
hensive comparison of average and worst case behaviour based
on numerical investigations is provided. Section 5 reviews
some related work in this area and Section 6 concludes the pa-
per and gives an outlook to possible future work.

2 PRIORITY QUEUEING: AVERAGE CASE
ANALYSIS

In this section, we mainly recall known results from classical
queueing theory. First, we briefly discuss what queueing theory
is good for and on which assumption it builds. While this is cer-
tainly repetition for most readers it helps to contrast queueing
theory results against results from network calculus which we
derive in Section 3. Next, we state the available queueing theo-
ry results in the domain of non-preemptive priority queueing.

2.1 Some Background on Queueing Theory

Queueing theory has been and certainly still is #ze tool to model
and analyse systems with shared resources and stochastic be-
haviour of system user’s (see Figure 1 for a basic model of what
problems queueing theory is concerned with). Although, there
is also much research on transient analysis of queueing systems,
queueing theory is mainly a tool for equilibrium investigations
and average behaviour. One of the strong results of queueing
theory is given by the so-called Pollaczek-Khinchine Formulae
for M/G/1 queueing systems, i.e., systems with Poisson arrivals
and general service times (although with finite variance).
Theorem 1: M/G/1 — Pollaczek-Khinchine Formulae for Aver-
age Waiting Time and Queue Size

Let us assume service times have a general distribution with

average 1/ and variance 5> and arrivals follow a Poisson
process with parameter A. Then the average waiting time, i.e.,
the average time packets spend in the queue, is given by
Mo +1/ud)

2(1-p)
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Figure 1: Basic Queueing Theory Model.
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Note that this theorem is under the additional assumption of
FIFO queueing. There is many proofs of this famous result,
three of which can be found in [5].

2.2 Non-Preemptive Priority Queueing in

M/G/1 Systems
Since we assume non-preemptive strict priority queueing in-
stead of FIFO queueing we need an extension on Theorem 1 un-
der this scheduling discipline. In fact this exists and is given by
the following theorem.
Theorem 2: M/G/1 — Average Waiting Time under Non-Pre-
emptive Priority Queueing
Let us assume we have n classes each with Poisson arrivals

with parameters A, ..., A, and general service time distribu-

2

. . . 2
tions with average 1/u, ..., 1/n, and variance 67, ..., G, .

The average waiting time for class i, i = 1, ..., n, is given by:
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with p = Z pjsh = Z A; and t the service time.
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While this theorem is quite powerful it still assumes Poisson ar-
rivals and is restricted to the single node case. While the former
has been relaxed to some degree the general case is still intrac-
table as of today, the latter is also extremely difficult to treat
since due to the priority queueing arrivals at subsequent nodes
become dependent on each other in non-trivial manner. Never-
theless, we use this fundamental result to analyse the average
behaviour of priority queueing, i.e., we assume Poisson arrivals
and only look at the single-node case. Note that we manly focus
on the worst case behaviour and use the average behaviour anal-
ysis in order to assess our worst case results on priority queue-
ing.

Note that using Little’s formula we can also calculate the av-
erage number of packets inclassi, i = 1,...,n:

E(Ty)

E(qi) = KiE(Wl’) = 4
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Jj=1 Jj=1



3 PRIORITY QUEUEING: WORST CASE
ANALYSIS

In this section, after giving some background information on
network calculus and its notation (largely following [1]), we de-
rive basic properties of non-preemptive priority queueing based
on network calculus.

3.1 Background on Network Calculus

Network calculus is a tool to analyse flow control problems in
networks mainly from a worst case perspective. In particular, it
is able to abstract from particular traffic regulation and schedul-
ing schemes and thus allows to arrive at very general results. In
our case, it is the framework to derive deteministic guarantees
on throughput, delay, and loss-freeness for packet networks that
internally operate with non-preemptive priority queueing and
which input is constrained by the use of traffic regulation
schemes as for example token buckets.

Network calculus could also be interpreted as a system theory
for deterministic queueing systems. Mathematically it is based
on min-plus algebra, a so-called topical algebra. In contrast to
queueing theory, network calculus is concerned with worst case
instead of average or equilibrium behaviour and therefore does
not deal with arrival and departure processes themselves but
with bounding processes called arrival and service curves. In
the following, we give some basic definitions and notations be-
fore we summarize the basic results that network calculus pro-
vides.

Definition: Input Function

Call R(¢) the input function of an arrival process if it counts
the number of bits in interval [0,f], in particular R(0) = 0. R
is wide-sense increasing, i.e., R(#;) < R(t,) if t; <¢,.
Definition: Output Function

Call Ro(t) the output function of a system which is offered R
as an input function (see Figure 2). RO( t) counts the number of

bits that have left S in interval [0,t], in particular RO(O) =0.

R’ is wide-sense increasing, i.e., Ro(tl) < Ro(tz) it <t,.
Definition: Min-Plus Convolution

Let f, g be wide-sense increasing function with
f(0) = g(0) = 0. The convolution under min-plus algebra
for these two functions is defined as
(O L)1) = infy, o Afi—5)+2(s)}.

Under these prerequisites we can now define the major con-
cepts of network calculus, arrival and service curve, by means

of the min-plus convolution.
Definition: Arrival Curve

A wide-sense increasing function o with o(¢) = 0 fort<0 is
called an arrival curve for an input function R if R<R® a.
We also say R is a-smooth or R is constrained by a.

Figure 2: Input and Output Function. The system S here
could be a single buffer, a network node or a complete net-
work.

Definition: Service Curve

Consider a system S and a flow through S with R and R°. § of-
fers a service curve B to the flow if B is wide-sense increasing

and R”">R®B .

Based on the concepts of arrival service curve it is now possible
to capture the major worst case properties for data flows: maxi-
mum delay and maximum backlog. These are stated in the fol-
lowing theorems.

Theorem 3: Backlog Bound

Assume a flow R(#) constrained by arrival curve a traverses a
system S that offers a service curve 3. The backlog x(?) for all ¢
satisfies:

x(t) Ssupgs glals)—PB(s)} = v(a, B). &)
v(a, B) is also often called the vertical deviation between o
and B.

Theorem 4: Delay Bound

Assume a flow R(¢) constrained by arrival curve o traverses a
system S that offers a service curve 3. The virtual delay d(¢) for
all ¢ satisfies:

d(t) <supgs otinfit20]a(s)<P(s+1)}} = h(a, B)  (6)

h(a, B) is also often called the horizontal deviation between o

and B.
A typical example of an arrival curve is given by
Yy () = rt+b @)

which results from using the prominent token bucket algo-
rithm as traffic regulation mechanism.
A typical example of a service curve is given by

Be 7() = R(=T) ®)
where the notation (x)+ stands for x if x > 0 and 0 otherwise.
This also called a rate-latency service curve and results from the
use of many popular schedulers many of which can be general-
ized in the class of guaranteed rate or latency rate schedulers [6,
7]. An example scheduling algorithm that offers a rate-latency
service curve is Packet-by-Packet Generalized Processor Shar-
ing [8].
3.2 Non-Preemptive Priority Queueing under
General Arrival Curves
Now we use network calculus to analyse non-preemptive prior-
ity queueing for a given number of classes » and under the as-
sumption that the input of each class i is constrained by «; for
i = 1,...,n.Tohave a constraint on the input function for the
last class is often not necessary since with the lowest priority
there are often no guarantees associated. However, to demand
guarantees for the lowest priority, of course, is the more general
assumption therefore we follow this assumption.
Service Curve for Non-Preemptive Priority Queueing
First, we derive the respective service curves for each class
under non-preemptive priority queueing. The following theo-
rem states the interesting result that service curves of lower pri-
ority classes are dependent on the arrival curves of higher
priority classes.
Theorem 5: Let C be the overall capacity of the system. Let o

. . . . P
be the arrival curve for input to class i. The service curve f;

for class i is given by
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Here l;.nax is the maximum size of a packet in class ;.
Proof:
o . .
Let R,(¢), R;(¢) be the input and output function for traffic

from class i for i = 1, ..., n. Now, let s be the start of the last
busy period due to traffic from classes 1 to i before a fixed time
t. Then the amount of service given to traffic from class i is
lower bounded by the server output minus the service given to
higher traffic classes and the maximum packet size for lower
traffic classes for which a single packet might just have started
service before s. The server output in interval [s,f] is given
by C(t—s) by definition of a busy period. Thus we have

i1
RI(D=R{()2 C1=35) = Y (R] (1)~ R} (5) - L, (10)

j=1
Due to s being the start of a busy period for traffic from classes
j =1,...,i we also have R;.}(s) = R/.(s) . Thus

o 14 0
Rj (1) - R]. (s) = Rj (1) —Rj(s)
< Rj(t) - Rj(s) < onj(tf s)

That means we can make use of the arrival curve constraint in
(10). Note that the bound in (11) is tight because at time ¢ input
and output function could well be equal and of course traffic
could be greedy. Introducing (11) in (10) we obtain

i—1

RI(t)~R(s) = C(t—s)~ > oyt-s)- L, (12)

j=1

(11)

Since R](.) is wide-sense increasing we obtain
i—1 +

RI(t)> R(s)+| C(t—s) — > oy t-s)-L;
=1

= R(s)+ B (1—5) 13)
> inf0<s<t{Ri(s) + Bf’(ts)}

= (R,®B))(1)

. . . . P
Thus, indeed, non-preemptive priority queueing offers §; asa

service curve towards traffic from class i.
]
The theorem is the basis for all subsequent findings of the pa-
per. Moreover, it contains a very constructive result:
There is a quantifiable dependency of lower priority class-
es’ service curves on the arrival curves of higher priority
classes.

There are several ways to use this in practical networking prob-
lems as for example in flow or packet admission control for
class-based networks. In particular for flow admission control,
it allows to dimension aggregate arrival curves for each class
such that certain delay targets for each class are achieved. New
flow requests for a class can then be checked by the admission
control against whether the sum of arrival curves of already ad-
mitted flows and the new flow is still below the aggregate arriv-
al curve which is necessary to achieve the delay target.

In contrast to the standard way of network calculus of being
given a certain arrival curve and then calculating the service
curve such that given properties like a certain maximum delay
are achieved, we kind of reverse the reasoning by calculating
the service curve for general arrival curves and then choose the
arrival curve such that the service curve of each class leads to
certain properties within that class.

While the dependency between arrival and service curve might
at first sight give an uneasy feeling about possible circular de-
pendencies due to the fact that service curves operate on arrival
curves to calculate quantities like maximum delay or maximum
backlog it must be realized that they are not dependent on the
actual arrival processes but can be treated as a given.
3.3 Non-Preemptive Priority Queueing with

Token Buckets as Arrival Curve
In this section, we now assume a particular arrival curve, the
popular token bucket [9]. Under this assumption we can concre-
tise the service curve for general arrival curves and can then de-
rive bounds on maximum backlog and delay per class.
Service Curve
First we apply Theorem 5 to the special case of token buckets as
arrival curves for the different classes in order to derive the
service curve for non-preemptive priority queueing. Theorem 6
states the result.
Theorem 6: (Service Curve under Token Buckets)

Let a; =7y, , be the arrival curve for traffic class j,
Vi

j=1,...,n, ie., each traffic class is constrained by a token
bucket (each with its own parameters). The service curve for
class i under non-preemptive priority queueing is then given by

Bl = B o with (14)
i1 i—1 i-1
R, =C-F rand T} = | Y b+L|/|C- Y 7,
J i JoTi J
j=1 v =1 Jj=1
That means the service curve is of the rate-latency type.
Proof:
The theorem is a consequence of Theorem 5 and the definition
of the rate-latency service curve in (8):
i-1 + i-1 +

Ct— ZQj(t)—Li =|Ct— Z(rjt-l-bj)—Ll.

j=1 Jj=1

i—1 i—1 i—1 +
==

t— ij-i-Ll- /| C— er

j=1 j=1 j=1

Br(t) =

= P

i



]
Delay and Backlog
Using the service curve for non-preemptive priority queueing
we can now derive the worst case delay bound as well as the
maximum backlog bound for each traffic class using the funda-
mental network calculus results from Theorem 3 and Theorem
4.

The backlog bound is given by the following theorem.

Theorem 7: Per-Class Backlog Bound under Token Buckets

Let & =Y, p be the arrival curve for traffic class j,
7

j=1,...,n,ie., each traffic class is constrained by a token
bucket (each with its own parameters). For stability we further

n
assume that C > Z r.

i=1
The maximum backlog per traffic class i is bounded by the ver-
tical deviation between the arrival curve to class i, v, , , and

. . P
its service curve, f3;
i—1 i—1
P
V(Yri,b;Bi) = 1% ijJrLl./ szrj +b,; (15)
=1 j=1
Proof:
i—1
Due to the stability condition we have C — Z g 2r;,ie., the
Jj=1
slope of the service curve is higher than that of the arrival curve
for class i. That means the maximum vertical deviation is taken
on at the latency of the service curve for class 7, because the

service curve comes closer and closer to the arrival curve once
the service is “started”, i.e.,

V(1 o B) = supgs o{vri, b ()= B} (s)}

Y, o (T1) = Bi (T})

= v, (T}

i-1 i—1

r;x ij-l-Ll-/ C—er +b;
=1 j=1

Next we derive the per-class maximum delay bound under the
same assumptions in Theorem 8.
Theorem 8: Per-Class Delay Bound under Token Buckets

Let &=, p be the arrival curve for traffic class j,
: i

j=1,...,n, ie., each traffic class is constrained by a token
bucket (each with its own parameters). For stability we further
n

assume that C > Z r;.

i=1
The maximum delay per traffic class i is bounded by the hori-

zontal deviation between the arrival curve to class i, v, , , and
»

. . P
its service curve, [3;

i i—1
P
Wy, B = | S b Ll C- S (16)

v=1 Jj=1

Proof:

Following the same arguments as in the proof of Theorem 7, it
is clear that the maximum horizontal deviation is taken on at
the origin, i.e.,

h(yri’ by BZP) = Sups> O{inf{T 2 0|Y,~i’ bl_(S) < ij(s + T)}}

inf{r 20y, ,(0)=< Bf(T)}

i-1 i-1
= infit20lb,<= %" b=L;+|C= % r;|t
Jj=1 j=1
i i-1
= infit20| ij-irLl. / C—er <1
j=1 j=1
i i-1
= ij+Li/C—er
y=1 Jj=1
]

So we can now compute besides the known results for average
behaviour also the worst case properties for non-preemptive
priority queueing if we assume each traffic class conforms to a
token bucket (respectively make it conform to it by either using
admission control at ingress to the network or drop packets ac-
cording to the token bucket).

4 COMPARING AVERAGE AND WORST CASE
BEHAVIOUR OF PRIORITY-BASED CLASS-OF-
SERVICE NETWORKS

In this section, we perform some numerical investigations on
the formulae derived above, both for the average as well as for
the worst case behaviour of non-preemptive priority queueing.
When comparing average and worst-case behaviour we need to
keep in mind that the assumptions are quite different. For the
average case we assume Poisson arrivals whereas for the worst
case we have no restricting assumptions on the arrival process
for a given traffic class other than that it is bounded by its class-
specific token bucket.

At first, we provide a comprehensive numerical example of a
non-preemptive priority queueing system with 8 traffic classes,



before we then investigate the influence of different parameters
more closely.

For the sake of simplicity we assume in the following investi-
gations that the maximum packet size is the same over all class-
es. Since traffic for these classes is aggregated traffic of
possibly all kinds this is also a realistic assumption. In particu-
lar, we set the maximum packet size for all classes to 1500
bytes. Furthermore we assume for the distribution of packet siz-
es that their average is 420 and their standard deviation is about
521 which corresponds to up-to-date measurements from [10].

4.1 Comprehensive Numerical Example
We assume 8 traffic classes each with 10% load of the overall
server capacity which is assumed to be 100 Mbps. For each
class’ token bucket size we assume it to be 20% of the token
bucket rate. This accounts for (infinitely fast) bursts of a vol-
ume corresponding to 200 ms of average activity in the class
which seemed reasonable to us.

In Table 1 the different delay and queue size values for all
classes are given.

Class Av. W. C. Av. W. C.

Delay | Delay | Queue Size | Queue Size
1 0.02 20 0.06 500
2 0.03 45 0.08 556
3 0.04 75 0.10 625
4 0.05 114 0.13 715
5 0.07 167 0.18 834
6 0.11 240 0.27 1001
7 0.18 350 0.45 1251
8 0.36 534 0.91 1668

Table 1: Average and worst case delays (in ms) and queue
sizes (in packets).

In addition, in Figure 3 and Figure 4 we have depicted the aver-
age and worst case delay for each class.

As can be seen, the worst case behaviour is about 3 orders of
magnitude above the average case behaviour for delay and
about 4 orders of magnitude above for queue size. While for
both, average and worst case behaviour, we can observe good
differentiation between the classes we can see a more pro-
nounced and balanced differentiation with respect to worst case
delay in particular for high priority classes.
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Figure 3: Average Delay for Different Classes.
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Figure 4: Worst Case Delay for Different Classes.

In the following we examine the influence of different param-
eters like the ratio of high priority traffic classes to low priority
ones, the burstiness of high priority traffic, the server capacity,
and the total load. For these it is for presentational purposes
more convenient to look only at 2 classes instead of 8 since the
basic effects can be more easily identified by contrasting high
priority against low priority traffic. Furthermore, we focus on
delay when comparing average and worst case behaviour in the
following.

4.2 Ratio of High Priority Traffic

In this experiment, the ratio between high and low priority traf-
fic is varied while everything else is kept fixed, in particular the
total load in the system is kept at 80%.

Figure 5 shows the average delay for an increasing load from
high priority traffic while Figure 6 shows the worst case delays.

While again being 3 orders of magnitude apart from each oth-
er we can observe a very similar behaviour: for increasing high
priority traffic load the low priority traffic is punished harder
once a certain load of high priority traffic is exceeded. This cer-
tainly calls for keeping the load from high priority traffic low
since other traffic is otherwise suffering considerably.

4.3 Burstiness

Again we assume two classes of traffic, yet now we keep the ra-
tio between high and low priority traffic fixed (at 20:60%) and
vary the burst size for the high priority class. Of course, this
does not influence the formulae for average behaviour, so we
only examine the effect on the worst case delay.
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Figure 5: Average Delay for Different Ratios of High and
Low Priority Traffic.
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Figure 7: Worst Case Delay for Different Burst Sizes of
High Priority Traffic.
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Figure 7 shows the results. We observe an almost linear de-
pendency on the burst size of the high priority traffic class and
both classes exhibit the same slope.

4.4 Server Capacity

Next, we want to investigate the influence of the server capaci-
ty. Figure 8 shows the average delay for varying server capaci-
ties, while Figure 9 shows the worst case delay.

As can be seen, while increasing the server capacity has a pos-
itive influence on average delays it has no effect on the worst
case delays which remain almost constant. This means that the
difference between worst case and average delays very much
depends on the server capacity and is growing with increasing
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Figure 9: Worst Case Delay for Different Server Capacities.
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Figure 10: Average Delay for Different Total Load.
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Figure 11: Worst Case Delay for Different Total Load.

server capacity. This phenomenon should lead to possibly large
deviations between delays, i.e., large jitter in high capacity sys-
tems — a reason to have more stringent control over the worst
case delay for traffic that is sensitive to jitter.

4.5 Total Load

In this experiment we change the total load offered to the sys-
tem while keeping the ratio between high and low priority traf-
fic fixed (at 1:2), i.e., there is always twice the amount of low
priority traffic in the system.

Figure 10 and Figure 11 show the results for average and
worst case delays.



For both, average and worst case behaviour, the curves show
a higher dependency of low priority traffic on the total load than
for high priority traffic. Furthermore, we can observe the typi-
cal steep increase for average delay when load approaches ca-
pacity whereas for worst case delays the system response is
almost linear.

5 RELATED WORK

In this section, we review some related work. Here, we focus on
directly related work whereas all the fundamental research re-
sults we built upon are referenced at the locations where we
made use of them.

Closest to our work is a measurement based analysis of aver-
age delays in priority queueing by Ferrari et al. [11]. They build
up a small testbed consisting of Cisco routers and employ their
priority queueing scheme. Their experimental results are abso-
lutely consistent with the average queueing behaviour results
which are predicted by an M/G/1 queueing system (recapitulat-
ed in Section 2). Of course, due to the experimental behaviour
they cannot provably make any statements about worst case de-
lays for priority queueing.

There is a large body of queueing theoretical work concerned
with priority queueing which derives more advanced results
than those presented in Section 2. However, despite very thor-
ough treatment especially with respect to flexibilizing the Pois-
son arrival assumption a “quantum leap” has not been achieved.
A good overview can be found in [5]. In particular, it is dis-
cussed that networks of priority queueing systems do not have a
product form solution which is due to the fact that the priority
scheduling introduces complex dependencies between packet
arrival processes. Furthermore, there is some work on variants
of basic priority queueing as for example priority queueing with
priority jumps, where after a certain waiting time packets are el-
evated towards the next higher priority (see for example [12]).
None of these works takes regulated traffic into account and
thus is not able to investigate worst case bounds.

6 CONCLUSIONS & OUTLOOK

We analytically investigated the behaviour of non-preemptive
priority queueing systems. These have (re)gained importance in
packet networks due to schemes like DiffServ that allow for
simple priority queueing as cheap implementation for offering
performance guarantees in so-called class of service networks.

Based on network calculus, we derived so far unknown
bounds on delay and backlog per traffic class in non-preemptive
priority queueing systems and contrasted them against known
average case results from classical queueing theory.

Practical implications from this work, apart from the funda-
mental insights from the comparison of average and worst case
behaviour, are in network performance control. As briefly dis-
cussed the results can be applied for admission control purposes
to achieve certain delay targets in each traffic class. Further-
more, by appropriately sizing token buckets it might be possible
to emulate some more sophisticated and therefore more costly
scheduling disciplines by using simple and available priority
queueing in routers.

For future work we have planned to do some practical inves-
tigations of priority queueing in order to verify our analytical
results, in particular we have already implemented priority
queueing for FreeBSD and with the aid of the ALTQ traffic

control framework [13] it should be relatively simple to per-
form some lab experiments. As we have seen that the worst case
bounds are several orders of magnitude higher than what one
would expect from an average behaviour analysis we see a po-
tential for better arrival curves than simple token buckets which
would allow to derive more stringent bounds on backlog and
delay.
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