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Abstract— At the current state of affairs it is hard to obtain
a predictable performance from wireless sensor networks, not to
mention performance guarantees. In particular, a widely accepted
and established methodology for modelling the performance of
wireless sensor networks is missing. In the last two years we
have tried to make a step into the direction of an analytical
framework for the performance modelling of wireless sensor
networks based on the theory of network calculus, which we
customized towards a so-calledsensor network calculus[1].
We believe the sensor network calculus to be especially useful
for applications which have timing requirements. Examples for
this class of applications are factory control, nuclear power
plant control, medical applications, and any alerting systems. In
general, whenever the sensed input may necessitate immediate
actions the sensor network calculus may be the way to go. In
this paper we summarize these activities and discuss the open
issues for such an analytical framework to be widely accepted.

I. I NTRODUCTION

Decisions in daily life are based on the accuracy and
availability of information. Sensor networks can significantly
improve the quality of information as well as the ways of
gathering it. For example, sensor networks can help to get
higher fidelity information, acquire information in real time,
get hard-to-obtain information, and reduce the cost of obtain-
ing information. Application areas for sensor networks might
be production surveillance, traffic management, medical care,
or military systems. In these areas it is crucial to ensure that the
sensor network is functioning even in a worst case scenario. If
a sensor network is used for example for production surveil-
lance, it must be ensured that messages indicating a dangerous
condition are not dropped, thus avoiding costly production
outages. If functionality in worst case scenarios cannot be
proven, people might be in danger and the production system
might not be certified by authorities.

As it may be difficult or even impossible to produce the
worst case in a real world scenario or in a simulation in a
controlled fashion, an analytical framework is desirable that
allows a worst case performance analysis in sensor networks.
Network calculus [2] is a relatively new tool that allows worst
case analysis of packet-switched communication networks. In
[1] a framework for worst case analysis of wireless sensor
networks based on network calculus is presented and called
sensor network calculus. This framework has further been
extended towards random deployments [3] and the case of
multiple sinks in [4]. The goal of this paper is to summarize
these activities and show the usefulness of the sensor network
calculus as well as opportunities for future work along this
avenue.

II. SENSORNETWORK CALCULUS: A BRIEF

WALK -THROUGH

In this section we use the notation and the basic results
provided in [1] (a summary of the most important notions of
network calculus are given in the Appendix), furthermore a
single sink communication pattern is assumed. It is assumed
that the routing protocol being used forms a tree in the sensor
network. Hence,N sensor nodes arranged in a directed acyclic
graph are given.

Each sensor nodei senses its environment and thus is
exposed to an input functionRi corresponding to its sensed
input traffic. If sensor nodei is not a leaf node of the tree
then it also receives sensed data from all of its child nodes
child(i, 1), . . . , child(i, ni), whereni is the number of child
nodes of sensor nodei. Sensor nodei forwards/processes its
input which results in an output functionR∗i from node i
towards its parent node.

Now the basic network calculus components, arrival and
service curve, have to be incorporated. First, the arrival curve
ᾱi of each sensor node in the field has to be derived. The
input of each sensor node in the field, taking into account its
sensed input and its children’s input, is

R̄i = Ri +
ni∑

j=1

R∗child(i,j) (1)

Thus, the arrival curve for the total input function for sensor
nodei is

ᾱi = αi +
ni∑

j=1

α∗child(i,j) (2)

A. Maximum Sensing Rate Arrival Curve

The simplest option in bounding the sensing input at a
given sensor node is based on its maximum sensing rate. This
may either be due to the way the sensing unit is designed or
due to a limitation on the sensing rate to a certain value by
the sensor network application’s task in observing a certain
phenomenon. For example, it might be known that in a
temperature surveillance sensor system, the temperature does
not have to be reported more than once per second at most.
The arrival curve for a sensor nodei corresponding to simply
putting a bound on the maximum sensing rate is

αi(t) = pit = γpi,0(t) (3)

Here, γr,b =
{

rt + b t > 0
0 t ≤ 0 denotes an affine arrival

curve. This maximum sensing rate arrival curve can be used
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in situations where all sensor nodes are set up to periodically
report the condition in a sensor field. The set of sensible
arrival curve candidates is certainly larger than the arrival
curves described above. The more knowledge on the sensing
operation and its characteristics is incorporated into the arrival
curve for the sensing input the better the performance bounds
become.

B. Rate-Latency Service Curve

Next, the service curve has to be specified. The service curve
depends on the way packets are scheduled in a sensor node,
which mainly depends on link layer characteristics. More
specific, the service curve depends on how the duty cycle and
therefore the energy-efficiency goals are set.

The service curve captures the characteristics with which
sensor data is forwarded by the sensor nodes towards the sink.
It abstracts from the specifics and idiosyncrasies of the link
layer and makes a statement on the minimum service that can
be assumed even in the worst case. A typical and well-known
example of a service curve from traditional traffic control in
a packet-switched network is

βR,T (t) = R [t− T ]+ (4)

where the notation[x]+ equalsx if x ≥ 0 and0 otherwise.
This is often also called a rate-latency service curve. The
latency termT nicely captures the characteristics induced by
the application of a duty cycle concept, i.e., the sensor nodes
periodically fall asleep for a certain amount of time if they are
idle. Whenever the duty cycle approach is applied there is the
chance that sensed data or data to be forwarded arrives after
the last duty cycle (of the next hop!) is just over and thus a
fixed latency occurs until the forwarding capacity is available
again. In a simple duty cycle scheme this latency would need
to be accounted for for all data transfers. For the forwarding
capacity it is assumed that it can be lower bounded by a fixed
rate which depends on transceiver speed, the chosen link layer
protocol and the duty cycle. So, with some new parameters the
following service curve at sensor nodei is obtained:

βi(t) = βfi,li(t) = fi[t− li]+ (5)

Here fi and li denote the forwarding rate and forwarding
latency for sensor nodei.

C. Network Flow Analysis

Finally, the output of sensor nodei, i.e., the traffic which
it forwards to its parent in the tree, is constrained by the
following arrival curve (see Appendix):

α∗i = ᾱi ® βi =


αi +

ni∑

j=1

α∗child(i,j)


® βi (6)

In order to calculate a network-wide characteristic like the
maximum information transfer delay or local buffer require-
ments especially at the most challenged sensor node just below
the sink (which is called node 1 from now on) an iterative
procedure to calculate the network internal flows is required:

1) Let us assume that arrival curves for the sensed inputαi

and service curvesβi for sensor nodei, i = 1, . . . , N ,
are given.

2) For all leaf nodes the output boundα∗i can be calculated
according to (6). Each leaf node is now marked as
“calculated”.

3) For all nodes only having children which are marked
“calculated” the output boundα∗i can be calculated
according to (6) and they can again be marked “cal-
culated”.

4) If node 1 is marked “calculated” the algorithm termi-
nates, otherwise go to step 3.

After the network internal flows are computed according to
this procedure, the local per node delay boundsDi for each
sensor nodei can be calculated according to a basic network
calculus result (see appendix):

Di = h(ᾱi, βi) = sup
s≥0

{inf{τ ≥ 0 : ᾱi(s) ≤ βi(s + τ)}} (7)

To compute the total information transfer delaȳDi for a
given sensor nodei the per node delay bounds on the path
P (i) to the sink need to be added:

D̄i =
∑

i∈P (i)

Di (8)

The maximum information transfer delay in the sen-
sor network can then obviously be calculated asD̄ =
maxi=1,...,N D̄i. Note that this kind of analysis assumes FIFO
scheduling at the sensor nodes, which however should be the
case in most practical cases.

III. SENSORNETWORK CALCULUS AT WORK

In this section some numerical examples for the previously
presented sensor network calculus framework are described.
These examples are chosen with the intention of describing
realistic and common application scenarios, yet they are
certainly simplifying matters to some degree for illustrative
purposes. The sensor network calculus framework allows,
from a worst case perspective, to relate the following local
characteristics:

• Sensing Activity: this parameter is described in the frame-
work by thearrival curve concept;

• Buffer Requirements: the buffer requirements of each
node are described by thebacklog bound;

to the following global characteristics:

• Information Transfer Delay: the delay in each node is
described by thedelay bound;

• Network Lifetime: the energy consumption is described
by theduty cyclerepresented in theservice curve.

The goal in using sensor network calculus is to determine
specific values for these characteristics for a given applica-
tion scenario. The scenario itself is characterized by further
constraints such astopologyand routing.
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Fig. 1. Sensor Field with Grid Layout.

A. Basic Scenario

The intention of this example is to analytically explore
the possible range of the characteristics discussed above in a
realistic scenario. Thereafter it is analysed in which operation
range a state of the art sensor node could be used to form the
sensor field.

1) Topology and Routing:The sensor field is assumed to
be a 9x9 grid, the distance between the sensors isd. Fig. 1
shows the lower half of a grid shaped sensor field with the
base station (sink) located in its center (nodes00). The size
of the field is8d× 8d, containingN = 80 sensors each with
an idealized transmission range of

√
2d.

For the routing protocol, the Greedy Perimeter Stateless
Routing (GPSR) protocol is used [6]. All nodes in GPSR must
be aware of their position within a sensor field. Each node
communicates its current position periodically to its neighbors
through beacon packets. In the given static scenario, these
beacons have to be transmitted only once. Upon receiving
a data packet, a node analyses its geographic destination. If
possible, the node always forwards the packet to the neighbor
geographically closest to the packet destination. If there is no
neighbor geographically closer to the destination, the protocol
tries to route around the hole in the sensor field. This routing
around a hole is not used in the described topology. In Fig. 1
the resulting structure of the communication paths is shown.

2) Sensing Activity:It is assumed that the sensor field is
used to collect data periodically from each of the sensors.
Each sensor can report with a maximum report frequency of
p. Thus, the maximum sensing rate arrival curve described by
(3) is used to model the upper bound of the sensing activity of
each node in the sensor field. A homogeneous field is assumed,
hence

αi(t) = pt = γp,0(t) (9)

Each node additionally receives traffic from its child nodes
according to the traffic pattern implied by the topology and the
routing protocol (see Figure 1). Therefore, the arrival curveᾱi

for the total input of a sensor nodei is given by (2). Later it
will be shown in detail how the relevant̄αi can be calculated.

3) Network Lifetime:To achieve a high network lifetime a
duty cycle ofδ = 1% is set for the nodes in the network. As
a sensor node, the Mica-2 [13] platform is assumed. Mica-2

supports a link speed of 19.2 kbit/s. The minimum idle time
of the transceiver isT1 = 11[ms] (3ms to begin sampling,
8ms minimum preamble length), the corresponding sleep time
is T2 = 1085[ms]. Thus, a maximum packet forwarding
rate of 0.89[packets/s] (f = 258[bit/s]) can be achieved.1The
resulting latency for the packet forwarding isl = T1 + T2.
This packet forwarding scheme can be described by the rate-
latency service curve as described by equation (5) in Section
II-B:

βi(t) = βf,l(t) = f(t− l)+ = 258(t− 1.096)+[bit] (10)

4) Calculation: After defining the scenario, the sensor
network calculus framework can now be used to evaluate the
characteristics of interest and their interdependencies. Goal
of the calculation is to determine these characteristics at the
sensor node with the worst possible traffic conditions. In this
example this is the nodes10. If the characteristics in this node
are determined and the node is dimensioned to cope with
them, all other nodes in the field (assuming homogeneity) are
dimensioned properly as well.

To calculate the total traffic pattern, the algorithm described
in Section II-C has to be used. First, the output boundα∗40 of
the leaf nodes40 has to be calculated using (9), (10) and (16):

α40 = γp,0, β40 = βf,l, α∗40 = α40 ® β40 = γp,pl (11)

The output bound for nodes40 is also the output bound for
the other leaf nodes (e.g.,α∗40 = α∗41 = α∗42 = α∗43). Now the
output bounds for the nodes one level higher in the tree can
be calculated using equation (11), (9), (10) and (6):

ᾱ30 = γp,0 + 3α∗40 = γp,0 + 3γp,pl = γ4p,3pl

α∗30 = ᾱ30 ® β = γ4p,7pl (12)

The calculation can now be repeated until nodes10 is
reached:. . .

ᾱ10 = γp,0 + 2α∗21 + α∗20 = γ16p,34pl

α∗10 = ᾱ10 ® β = γ16p,50pl (13)

After the arrival curve for nodes10 is calculated, the worst
case buffer requirementsB10 and the information transfer
delayD can be calculated according to equation (14) and (7):

B10 = v(ᾱ10, β) = 50pl

D10 = h(ᾱ10, β) = l +
34pl

f
, D20 = h(ᾱ20, β) = l +

13pl

f

D30 = h(ᾱ30, β) = l +
3pl

f
, D40 = h(ᾱ40, β) = l

D = D40 + D30 + D20 + D10 = 4l +
50pl

f

1Values are taken from the TinyOS code (CC1000Const.h). The packet
length is 36 bytes, the preamble length for 1% duty cycle is 2654 bytes.
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5) Discussion: Now, after all nodes are calculated, it is
possible to determine specific values for the characteristics
of interest for the given application scenario. Furthermore
it is possible to evaluate how these factors influence each
other. As mentioned above, due to the channel speed and
the selected duty cycle, the effective maximum forwarding
speed isf = 258[bit/s]. The arrival rate of packets cannot
be higher than the maximum forwarding speed. A higher
arrival rate would result in an infinite queueing of packets.
Therefore, the sensing rate must be set such that16p ≤ f .
In the following, the highest possible integral sensing rate is
assumed:p = bf/16c = 16[bit/s]. This first result already
shows the limits of this specific sensor field regarding its
maximum sensing frequency. Translated in TinyOS packets
with a standard size of36 byte, the result shows that each
sensor can only send a packet every 18 seconds.

The backlog bound at nodes10 is now given by:B10 =
50pl = 876.8[bit]. This result can be translated into TinyOS
packets with the standard size of 36 byte. In this case,
d3.04e = 4 packets must be stored in the worst case in node
s10. As a Mica-2 node provides per default only a buffer space
of one, a node modification would be necessary to support the
described scenario in the worst case. The maximum informa-
tion transfer delay is given by:D = 4l + 51pl

f = 7.85[s].
To improve the backlog bound and the information transfer

delay, the duty cycle used in the nodes can be modified.
Of course the improvements have to be paid in this case
with a higher energy consumption in the nodes and thus a
shorter network lifetime. If the duty cycle is set to 11.5%2,
a maximum packet forwarding rate of 0.54[packets/s] (f =
2488[bit/s]) can be achieved. The resulting delay for the packet
forwarding is l = T1 + T2 = 11 + 85 = 96[ms]. Now the
following is obtained:B10 = 50pl = 76.8. In this case now,
only 1 TinyOS packets needs to be stored in nodes10 even
under worst case conditions. The information transfer delay is
now given by:D = 4l + 51pl

f = 0.41[s].

IV. A DVANCED SENSORNETWORK CALCULUS

After the brief walk-through of the sensor network calculus
basics and the illustrative example of its operation, we will
discuss some of the more advanced techniques we have de-
veloped to further customize network calculus to the wireless
sensor network setting as well as some of the applications of
the framework we have proposed.

We have seen in the previous sections how the single
sink communication pattern typically found in wireless sensor
networks was used to iteratively work out the internal traffic
flow bounds inside the network and use these to calculate
delay bounds in an additive fashion. However, one of the
strengths of network calculus is its powerful concatenation
result, which allows in general to achieve better bounds
when a tandem of servers is first min-plus convoluted to a
single system compared to an additive analysis of the separate
servers. This concatenation result is not directly applicable in a
wireless sensor network scenario even when only considering
the simple single sink case. Therefore, we have generalized

2A duty cycle value offered by the TinyOS code for the Mica-2.

the concatenation result for general feedforward networks in
[5], introducing a principle called “pay multiplexing only
once” which makes optimal use of sub-paths shared between
flows and achieves improvements over the additive bounds,
which may be on the order of magnitudes depending on the
scenario. A further extension of the basic sensor network
calculus, which we also describe in [5], is the integration
of maximum service curves into the sensor network calculus,
which allows to improve the bounds on the network-internal
flows and thus in turn lowers the performance bounds, again
often very considerably. All these techniques, among other
general network calculus techniques, have been implemented
in the so-called DISCO Network Calculator. As we believe that
tool support is of great importance for a wide acceptance of
the sensor network calculus we provide the DISCO Network
Calculator in the public domain3.

Apart from trying to push the sensor network calculus
forward methodically, we have also illustrated how to apply
it for several design and control issues in wireless sensor
networks. In [1] we have shown how a buffer dimensioning of
the sensor nodes may be performed based on the worst case
analyses of sensor network calculus such that no information
is lost due to buffer overflow inside the network. Furthermore,
we also discussed in [1] how different choices of duty cycles
affect the information transfer delay. In [3], we considered
the case of a randomly deployed sensor network and how
this further dimension of uncertainty can be factored into
the sensor network calculus. In particular we discussed how
constraints from topology control may be used to improve the
performance bounds from the sensor network calculus. Thus,
we proposed to guide topology control decisions based on the
sensor network calculus models. In [4] we used the advanced
sensor network calculus result discussed in the previous para-
graph to investigate scenarios with multiple sinks. In particular
we demonstrated how sensor network calculus can be used to
dimension the number of sinks as well as their placement in
the sensor field.

V. OPEN ISSUES ANDFUTURE WORK ITEMS

While we believe the sensor network calculus to have
potential, there are still many open issues and correspondingly
opportunities for future work. One immediate issue arising
from the use of a deterministic analytical framework is the
question how to capture the inherently stochastic nature of
wireless communications. Here, we plan to integrate lately
upcoming stochastic extensions of network calculus [7], which
however again need to be customized for the sensor network
case. Another issue is how to take in-network processing
as is frequently proposed for wireless sensor networks into
account. In [8] we have proposed a network calculus that
allows for the scaling of data flows. This development should
enable modelling of typical in-network processing techniques
as for example aggregation of information. Furthermore, it
should also be possible to accomodate the mobility of sensor
nodes and/or sinks. As in many scenarios this is a kind of

3See http://disco.informatik.uni-kl.de/content/Downloads.



5

controlled mobility there is hope to capture even this difficult
characteristic of advanced wireless sensor network scenarios.

Apart from these fundamental issues for the sensor network
calculus, it is also important to demonstrate its usefulness
in further applications. At the moment we design a task
admission control scheme based on sensor network calculus
for sensor networks that may have several concurrent tasks.
Another work item could be a scheme where sleeping nodes
are activated such that certain performance bounds can still
be satisfied. Apart from these issues the presented framework
should also be validated by packet-level simulations in order
to increase the fidelity in the predictive power of our models.
Especially this last point deserves our immediate attention and
is already currently under investigation.
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APPENDIX:BACKGROUND ON NETWORK CALCULUS

Network calculus isthe tool to analyse flow control prob-
lems in networks with particular focus on determination of
bounds on worst case performance. It has been successfully
applied as a framework to derive deterministic guarantees on
throughput, delay, and to ensure zero loss in packet-switched
networks. Network calculus can also be interpreted as a system
theory fordeterministicqueueing systems, based on min-plus
algebra. What makes it different from traditional queueing
theory is that it is concerned with worst case rather than
average case or equilibrium behaviour. It thus deals with
bounding processes called arrival and service curves rather
than arrival and departure processes themselves.

Next some basic definitions and notations are provided be-
fore some basic results from network calculus are summarized.

Definition 1: The input functionR(t) of an arrival process
is the number of bits that arrive in the interval[0, t]. In
particular R(0) = 0, and R is wide-sense increasing, i.e.,
R(t1) ≤ R(t2) for all t1 ≤ t2.

Definition 2: The output functionR∗(t) of a systemS is
the number of bits that have leftS in the interval [0, t]. In
particular R∗(0) = 0, and R is wide-sense increasing, i.e.,
R∗(t1) ≤ R∗(t2) for all t1 ≤ t2.

Definition 3: Min-Plus Convolution. Letf andg be wide-
sense increasing andf(0) = g(0) = 0. Then their convolution
under min-plus algebra is defined as

(f ⊗ g)(t) = inf
0≤s≤t

{f(t− s) + g(s)}
Definition 4: Min-Plus Deconvolution. Letf and g be

wide-sense increasing andf(0) = g(0) = 0. Then their
deconvolution under min-plus algebra is defined as

(f ® g)(t) = sup
s≥0

{f(t + s)− g(s)}
Now, by means of the min-plus convolution, the arrival and
service curve are defined.

Definition 5: Arrival Curve. Letα be a wide-sense increas-
ing function such thatα(t) = 0 for t < 0. α is an arrival curve
for an input functionR iff R ≤ R⊗ α. It is also said thatR
is α-smooth orR is constrained byα.

Definition 6: Service Curve. Consider a systemS and a
flow throughS with R andR∗. S offers a service curveβ to
the flow iff β is wide-sense increasing andR∗ ≥ R⊗ β.
From these, it is now possible to capture the major worst-
case properties for data flows: maximum delay and maximum
backlog. These are stated in the following theorems.

Theorem 1:Backlog Bound. Let a flowR(t), constrained
by an arrival curveα, traverse a systemS that offers a service
curveβ. The backlogx(t) for all t satisfies

x(t) ≤ sup
s≥0

{α(s)− β(s)} = v(α, β) (14)

v(α, β) is also often called the vertical deviation between
α andβ.

Theorem 2:Delay Bound. Assume a flowR(t), constrained
by arrival curveα, traverses a systemS that offers a service
curveβ. At any timet, the virtual delayd(t) satisfies

d(t) ≤ sup
s≥0

{inf{τ ≥ 0 : α(s) ≤ β(s + τ)}} = h(α, β) (15)

v(α, β) is also often called the vertical deviation between
α andβ.

As a system theory network calculus offers further results on
the concatenation of network nodes as well as the output when
traversing a single node. Especially the latter for which now
the min-plus deconvolution is used will be of high importance
in the sensor network setting as it potentially involves a so-
calledburstiness increasewhen a node is traversed by a data
flow.

Theorem 3:Output Bound. Assume a flowR(t) con-
strained by arrival curveα traverses a systemS that offers
a service curveβ. Then the output function is constrained by
the following arrival curve

α∗ = α® β ≥ α (16)

Theorem 4:Concatenation of Nodes. Assume a flowR(t)
traverses systemsS1 and S2 in sequence whereS1 offers
service curveβ1 andS2 offers β2. Then the resulting system
S, defined by the concatenation of the two systems offers the
following service curve to the flow:

β = β1 ⊗ β2 (17)


