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ABSTRACT

There is a trend of conventional static WSNs towards hy-
brid static and mobile WSNs which can be seen in many re-
cent protocols and designs. By enabling node mobility in
conventional WSNs, the number of static sensors can be re-
duced effectively. Yet, what is still missing about a hybrid
WSN is the optimal proportion of mobile and static sensors
that can achieve the same network performance as a conven-
tional WSN. In this paper, we propose an analytical model
for hybrid WSNs, in particular, dealing with the area cov-
erage issue while minimizing energy consumption. We first
present the optimal proportion of mobile and static sensors
in order to guarantee a full coverage with high probability
under a uniform random node distribution. A mobility strat-
egy is then developed which minimizes energy consumption
due to node mobility. Finally, we evaluate the performance
of the proposed model and mobility strategy using a discrete
event network simulation framework based on OMNeT++.
The simulation results validate the analytical solution.
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1. INTRODUCTION

The research focus of hybrid WSNs composed of mo-
bile and static sensors is increasing due to the high
general interest in mobility as a design parameter in
WSNs [3, 9, 12, 13]. Generally, mobile sensors reduce
the number of static sensors and can improve network
performance. Besides, a limited mobility approach is
considered in hybrid WSNs, because an excessive num-
ber of mobile sensors can increase cost and complexity
of other network functions as, for example, routing.

The quality of service of a WSN can be measured by
various performance metrics depending on its applica-
tions. A crucial and fundamental metric of WSN ap-
plications is area coverage. Typically, the coverage de-
termines the quality of data which plays a vital role in
most WSN applications. The point is that the accuracy
of data is directly proportional to the monitoring area
of the network covered by sensors. A sensor can moni-
tor events occurring within a certain distance from itself
which can be defined as its sensing range. Due to envi-
ronmental obstacles or electromagnetic waves a sensor
may be unreliable with respect to monitoring its sens-
ing range. Yet, the required level of redundancy, i.e.,
the notion of k-coverage, where & > 1 is the minimum
number of sensor(s) by which each point in the sensor
field is covered, varies in applications. Often, a full cov-
erage (i.e., 1-coverage) is a sufficient as well as necessary
condition in many WSN applications. A critical aspect
that determines coverage is sensor deployment.

Among various deployment strategies a random node
distribution is preferable owing to its simplicity, inex-
pensiveness, and feasibility in being deployed in harsh
environments and large-scale networks. Obviously, the
performance of a random deployment relies very much
on the node density. In [8], the authors addressed a
probabilistic k-coverage model that can determine the
appropriate number of sensors to provide k-coverage of a
region under mostly sleeping sensor nodes. The authors
also claimed that a uniform random deployment outper-
forms both the grid and the Poisson distribution place-
ments for k-coverage. Similarly, [14] proposed a suffi-
cient and necessary conditions for k-coverage. While
[8, 14] focus on conventional WSNs, a related work of



probabilistic field coverage in a hybrid WSN has been
studied in [11] where static sensors are activated accord-
ing to some activation schedule and a fixed number of
mobile sensors are always in motion to assist the static
sensors. In a hybrid network, it is natural to ask, given
a certain number of sensors, what would be the best
proportion of the number of mobile sensors to the num-
ber of static sensors in the network to acquire a full
coverage with high probability. The authors in [12] pro-
posed a hybrid network structure which uses a static
sensor density of A = 27k and a mobile sensor density
of \/ﬁ to provide k-coverage for small-scale networks
under the constraint of a maximum moving distance for
mobile sensors. Similarly, we tackle the problem of find-
ing the best proportion of static and mobile sensors, yet
without constraints on the moving distance.

In this paper, we introduce an analytical model of a
hybrid sensor network to provide the optimal propor-
tion of static and mobile sensors that guarantees a full
coverage with high probability. We first study the lower
and upper bound node densities that guarantee a full
coverage. Based on this, the relationship among static,
mobile, and total node densities can be established. In
a hybrid network of random deployment, mobile sen-
sors relocate their positions in order to enhance cov-
erage performance after the initial deployment. In [5],
the authors claimed that a greedy algorithm is a good
one because it can pick the sets that cover the maxi-
mum uncovered elements with an approximation ratio
of 1— % compared to the maximum approximation ratio
of 1 — é + e. A similar approach has been considered
in our mobility strategy. From repositioning of mobile
sensors to target locations arises another optimization
problem. In fact, it is an assignment problem which
deals with the question how to assign n resources (e.g.,
mobile sensors) to n tasks (e.g., targets). As a deci-
sion criterion, we used the energy consumption owing
to node mobility in the assignment of mobile sensors to
targets. Among various assignment problems, we took
linear sum assignment problem (LSAPs) [2] and bottle-
neck assignment problems (LBAPs) [4] into considera-
tion in our mobility algorithm.

2. PRELIMINARIES

2.1 Network Model and Assumptions

We consider a hybrid WSN consisting of IV sensors
which are deployed in a square region according to the
following models and assumptions:

e N sensors are identically and independently uni-
form distributed in a square deployment region
with area A having a side length of v/A.

o Assume that V is the set of sensors with |V| =
|Vs| + |Vin| = N where Vs = {vs,,vs,, ..., Vs, } and

Vi = {Umy,Umys s Umy_,+ are the set of static
and mobile sensors, respectively.

e Let d;;, be the Euclidean distance between node
i € V and a point p in [0, V/A] x [0,/A]. For every
point p, a full coverage of the network is guaranteed
iff: 3d;, < rg, where 1 € V and ry is a disc-based
sensing range.

e The node density A\ is the sum of static node den-
sity As and mobile node density A,,, which is A =
As + A

In addition, the locations of sensors are known a priori.
Initially, all nodes including mobile sensors are supposed
to be scattered randomly. For example, such a place-
ment can result from throwing sensor nodes from an
airplane. Mobile sensors are equipped with locomotion
capabilities and are able to move anywhere in the de-
ployment region after the initial deployment. We focus
on the energy consumption due to node mobility. We
define the node density with respect to coverage per-
formance. In particular, the node density is defined as
the area of the coverage disc to the area of a unit cell.
Details can be seen in Section 3.1.

2.2 Problem Definition

The main problems we address in this paper are:

1. Given a hybrid WSN consisting of N sensors,
which proportion between static and mobile sen-
sors would be optimal to guarantee a full coverage
with high probability?

2. For mobile sensors, which mobility strategy would
maximize area coverage of the network while min-
imizing energy consumption?

2.3 Contributions

We model and analyze a hybrid WSN under a random
deployment strategy. Our major contributions are:

e We characterize the coverage node density under
a random deployment strategy which is sufficient
to guarantee a full coverage with high probability.
(— Section 3)

e We introduce an analytical model for the best pro-
portion of static and mobile sensors. (— Section 3)

e We then derive a mobility algorithm for mobile
nodes to accomplish the desired coverage goal
while minimizing energy consumption owing to
node mobility. (— Section 4)

e We finally conducted thorough experiments using
discrete-event simulation to validate the analytical
solutions and to evaluate the proposed mobility
algorithm. (— Section 5)



3. HYBRID WSNS

The mobile sensors in a hybrid WSN have the ability
to reduce the node density and to enhance the network
performance. Mobile sensors can move to a required po-
sition such that they can achieve a better performance
compared to static sensors which do not have the ability
to move. An obvious example is to maximize network
coverage by mobile sensors that may be left uncovered
by purely static sensors. Simultaneously, repositioning
of mobile sensors can generate a balanced node distribu-
tion by moving away from an uneven node distribution.

On one hand, deploying only mobile sensors can get
the network performance similar to a deterministic de-
ployment by repositioning of mobile sensors to a desired
deployment. For example, a triangular tiling of N sen-
sors, which is known to be an optimal deployment for
coverage performance, can be obtained by relocation of
N mobile sensors which are deployed randomly to a sim-
ilar triangular placement. Without consideration of ge-
ographical impacts, a sufficient condition to achieve the
optimal deployment of having N sensors is N mobile
nodes in the non-deterministic deployment.

On the other hand, an excessive number of mobile
sensors can increase the complexity of other network
functions due to dynamic topology changes. These in-
clude routing complexity, data retransmission, and com-
munication overheads, etc. Moreover, locomotion capa-
bility is very expensive for a large number of mobile
sensors. Hence, a hybrid network with limited node
mobility can find a good compromise between cost and
performance issues. Now the question arises: what is
the optimal proportion of static and mobile sensors?

To deal with this question, initially, we focus on area
coverage. A sufficient condition of coverage performance
in most WSN applications is that a network can guaran-
tee to detect an event everywhere in the network, i.e., a
full coverage. In [10], the authors addressed that a ran-
dom node deployment has a diverse relative frequency of
k-coverage. Due to the randomness, a necessity of cov-
erage performance is guaranteeing a full coverage with
high probability.

In this section, we introduce an analytical model for
the best ratio of static and mobile sensors for a given
number of sensors N to attain the aforementioned cov-
erage performance. To formulate the best proportion of
static and mobile sensors, the lower and upper bound
node densities are required. We develop an approach for
determining the node density of a random deployment
in the following subsection.

3.1 Node Density of Random Deployment

Typically, node density can be defined as the number
of nodes per unit area. Without losing this standard
notion, we characterize node density in relation to cov-
erage as the area of the coverage disc to the area of a

unit cell. Therefore,

area of a coverage disc

A= (1)
In this definition, the area of a unit cell is the smallest
corresponding coverage area of a sensor node. In the
general case, it is equivalent to % where A is a network
area and N is the number of sensors. In a determinis-
tic network as, for example a tiling-based deployment
strategy [10], a unit cell can be constructed by connect-
ing the centroids of the surrounding polygons of a node
without consideration of boundary conditions. For in-
stance, a hexagon cell for triangular tiling is illustrated
in Figure 1(a).

area of a unit cell

b
Figure 1. (a) Triangular tiling deplo(yt)nent and (b) the
smallest coverage disc.

As mentioned above, we focus on a full coverage node
density under a random deployment strategy. In a ran-
dom deployment, sensors are inprecisely placed in a re-
gion without knowing their locations in advance. As a
result, a random deployment cannot guarantee coverage
performance. It is clear that the number of sensors re-
quired to accomplish a full coverage is much more than
that of the optimal deployment. In [14], the node den-
sity A = log(A)+(k+2)loglogA+c(A) with ¢(A) — +oo
is sufficient to guarantee k-coverage over the region A,
which, in fact, is an unbounded density compared to an
optimal deterministic deployment.

Being the simplest method and feasible in harsh envi-
ronments as well as large-scale networks, a better bound
on the node density for a random deployment should be
studied. To that end, we introduce an approach of the
coverage node density which is analogous to the node
density of the optimal deployment. Primarily, we study
the optimal deployment pattern that fulfills a full cover-
age. In literature, it has been shown that placing discs
at the vertices of triangular lattice, as shown in Fig-
ure 1(a), is optimal with respect to the number of discs
needed to achieve a full coverage [6]. The optimal de-
ployment can be constructed as a tiling of equilateral
triangles with side length %n and height of %rt, where
r¢ is the radius of coverage disc and each vertex hosts a
sensor. As we discussed above, the unit cell of a trian-
gular tiling is a regular hexagon of area %rf

Based on this unit cell of optimal deployment, we
model the lower bound node density for random deploy-
ment to achieve a full coverage. The idea is finding the
smallest coverage disc in which a unit cell can be fully



covered by that disc wherever a sensor is placed in the
cell. An extreme case is illustrated in Figure 1(b). We
can see that a unit cell with side length 7 can be fully
covered by a sensor having a minimum coverage disc
r. Recall that the coverage node density, A, is the area
of the sensing disk divided by the area of the smallest
corresponding cell. Therefore,
r 8w
i Nk 4.837. (2)

Note that, in the optimal deployment, a cell can be fully
covered only if a sensor is placed at the center of a cell.
Obviously, the optimal deployment has a lower bound
node density of

wr? 2
3\/;2 :7§1.21.
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Ao =

The node density of the optimal deployment is ©(1)
which is independent of the network area without con-
sideration of boundary effects. If the boundary condi-
tion is taken into consideration, the sufficient node den-
sity becomes A\, > % In contrast, the node density in
Equation (2) is formulated based on a single unit cell,
i.e., a regular hexagon cell. We apply the same concept
for the network of area A > % by dividing it into
regular hexagon cells. With a Poisson distribution, we
can check a full coverage performance with parameter
u = A. The probability that a cell is fully covered is
99.2%. The alert reader will notice that the proposed
node density can guarantee a full coverage for a rea-
sonable network area A. As the area of the network
increases, the probability of a full coverage decreases
very slowly. This slow decrease of full coverage prob-
ability tends to zero if the area approaches to infinity.
This is proved in the following lemma.

Lemma 1: If A — oo, then the density \ cannot guar-
antee a full coverage for a region of area A.

PROOF. Assume that a network of area A has a num-
ber of sensors n with node density A according to (2). A
network is divided into m = g cells where a is the area
of a unit cell. Let P! and P} be the probability that
the sensor is placed at cell ¢ and the probability that the
sensor is not placed at cell . In a uniform random de-
ployment, a node has equal likelihood to be positioned
in any cell ¢ = 1, ..., m. Hence, the probability of a sen-
sor to be positioned at cell ¢ is % = 4. The correlation
between the node density A, the number of sensors n,
and the area of the network A is n = AA. Let C;(A) be
the probability that a cell 7 in a region A is covered by
one out of n sensor that is placed at cell i. Thus,

Ci(A)=1-(1-PH" =1-(1— %)*A
If A— oo, C;(A) = 0since A >0. [

From the proof of Lemma 1, the coverage probability is
a decreasing function when increasing the network size

A. This shows that the node density has to increase if
the monitored area increases in order to maintain the
same coverage performance. Thus, we consider a slowly
increasing function in our node density model.

A similar approach has been introduced in [8, 14].
Kumar et. al [8] studied the k-coverage problem
for a network of mostly sleeping sensors n. The
authors showed that if there exists a slowly increas-
ing function f(A) but slower than loglog(A) and
f(A) — oif A — oo, the node density nprr? >
log(np) + f(A)(1 + \/plog(np)) + kloglog(np) provides
k-coverage with high probability where r is the sensing
range and p is the active node probability. In [14],
the authors proposed a sufficient and necessary con-
dition for k-coverage. Assume a function c¢(4) is a
monotonically slowly increasing function. Then the
node density, A = log(A) + (k + 2)loglog(A) + c¢(A),
guarantees k-coverage if ¢(4) — cowhen A — oo and
¢(A) grows slower than loglog(A).

Based on [8, 14], we enhance our model for any net-
work size A by taking into consideration a slowly in-
creasing function f(A) which tends to coas A — oo.
Finally, Equation 2 becomes

8w
Ay = 33 + f(A). (3)

A candidate for a slowly increasing function f(A) is

v/loglog(A).

Lemma 2: The node density \, guarantees a full cov-

erage for any network size A with a high probability.
PROOF. We are required to prove that if A —

oothen Cj(A) — 1. From Lemma 1, a full coverage

probability of cell i is C;(A) = 1 — (1 — %)*. By
substituting A,

] . — ] — _g AuA — — ] _g AuA
Jim 0 = fim (1= (= PA) =1 tim (=2

Let a =1 and y = —A, then

1
lim Ci(A) =1— lim (14 =) ¥
A—o0 A—o0 Yy

S g ()™

=1— lim e M
A—o0

And we know that A\, — cowhen A — oo, thus,
lim C;(A)=1—e =1

A—o0

O

A comparison of node densities between Equation 2 and
3 is presented in Figure 2.

3.2 Optimal Proportion of Static and Mobile
Sensors

In this section, we discuss the lower and upper bound
node density in order to formulate the best proportion
of static and mobile node densities. As we stated before,
the node density of a hybrid network is the sum of static
and mobile node densities, A = Ag + An,.
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3.2.1 Lower bound node density

The lower bound node density for hybrid WSNs is
the case where all sensors are mobile. This is due to
the fact that mobile sensors can deploy themselves in
an equivalent way to an optimal deployment given that
there is a mobility algorithm to do so. Hence, the lower
bound node density is identical to the node density of
the optimal deployment A\, = 32—”\/5 and the total node
density becomes A = \,;, = \,, where A\; = 0.

3.2.2  Upper bound node density

The upper bound node density for a hybrid WSNs
is the case where all sensors are static. The challenges
related to the upper bound node density are discussed in
Section 3.1 where we provide a sufficient node density A,
for random deployment. In all static sensors network,
Am = 0 and thus A = A\ = A\,.

3.2.3 Correlation between static and mobile node
density

By comparing the lower and upper bound density, we
can see the impact of mobile sensors with respect to
coverage performance. It is due to the fact that the
existence of one mobile sensor in the network can heal
uncovered “holes in the network” which can be acquired
by more than one static sensors that are deployed ran-
domly. We derive the proportion of static and mobile
node density in a way that A\, and A, have the abil-
ity of guaranteeing a full coverage with high probabil-
ity. Then the ratio of static to mobile sensors becomes
Ay @ Ao = %—i—f(A) : % = 4+%f(14). Hence, we
can determine that one mobile sensor is approximately
equivalent to at least 4 static sensors, A\s = 4\,,.

From this relation, if one parameter out of A, As, and
Am is given, the other two parameters can be computed
optimally. In the same way, we can compute two param-
eters of n, ng, and n,, if one out of these parameters and
the deployment region A is known a priori. A summary
of all these relationships is presented in Table 1.

4. MOBILITY STRATEGY

In Section 3, we proposed the optimal ratio of static
and mobile sensors. The next issue that has to be solved
in a hybrid WSN is how to relocate the mobile portion

Table 1. Relations among parameters.

Correlations

The total node density to guarantee a full coverage, A = A5 + A\,

The optimal proportion of static node density, A\s = %(AO — Am)

The optimal proportion of mobile node density, A, = i—Z()\u —As)

Total number of sensors, n = ns + Ny,

The number of static sensors, ngy = Z—Z(no — Nyy)

The number of mobile sensors, n,, = 7= (n, — ns)
w

P
The relationship among A, A, n, and r is A = 25—

of sensors into the optimal places. We assume that the
mobility algorithm is administered by a base station or a
control center. In reality, the optimal number of mobile
sensors produced by the analytical model may be lower
than the required number of mobile sensors to cover the
network area completely. Therefore, the main objective
of the mobility strategy is to maximize uncovered holes
so that the resulting node placement guarantees a full
coverage with high probability.

4.1 Maximum Coverage Problem
Given a region of area A with a number of static
sensors ng, there exists a set of uncovered cells U =
{c1,¢c2,...,cx} in A. A number of mobile sensors m = | S|
is given to fully cover the points in U. The objective
function is
maz. |C|

where C' C U such that

Vs; € M mazx.

Uel.

c, €U

The above constraints state that each mobile sensor
s; € M has to maximize the uncovered cells ¢; € U
so that the total number of uncovered cells will be max-
imized. In [3], the authors reduced a deployment prob-
lem into a set covering problem. They used a well-
known greedy algorithm [5] where the objective is to
maximize coverage. A similar approach has been ad-
dressed in our mobility strategy but now we also take
into consideration the cost issue due to node mobility
from their initial places to the optimal positions.

As we discussed in Subsection 3.1, the network is sub-
divided into hexagonal cells. The algorithm begins to
select subsets of uncovered cells where each subset has
the biggest set of uncovered cells which are within a cir-
cle of radius r. Each uncovered cell is assigned a weight.
The weight is defined as the number of uncovered cells
covered if a mobile sensor is placed on that cell. The
set of uncovered cells or targets (T') can have a single or
multiple elements having the same highest weight.

The next challenge is to find a mobile sensor for the
selected target(s). If a mobile sensor moves from its
original position to a target location, new uncovered
hole(s) may be generated. Thus, a mobile sensor has
to move only if its leaving can minimize the uncovered
holes. We assign the weight to each mobile sensor as we




Algorithm 1 MaxCoverage-MobileSensor-Reposition.

Given: A set of mobile sensors S = {s1,s2,...,5m,m} and a set of un-
covered cells U = {c1, ca, ..., c; } in the deployment region A
while (S # ¢ || U # ¢) do
1. Find a set of uncovered cells or target(s) 7' C U with the highest
weight
fori=1,...,k
(i). Assign a weight to each uncovered cell
(ii). Sort the uncovered cells by their weights
(iii). Choose the uncovered cell (targets T') with the highest weight
end for
2. Find a candidate mobile sensor s; C S with the lowest weight
for j=1,....m
(i). Assign a weight to each mobile sensor
(ii). Sort the uncovered cells by their weights
(iii). Choose the mobile sensor(s) s; € M with the lowest weight
end for
3.i4f (|T] > 11| |M] > 1)
Choose M1 or M2
M1: Minimizing total distance traveled
M2: Minimizing maximum distance traveled
Return an assignment of s; to T}
else
Move s; to Tj
end if
4.8t U=U\T,U=U U, and S =S\ M
5. Repeat
end while
Return a set of cells C = |J ¢; where C C U as targets for mobile
c; €T
sensors s; € S

did in the uncovered cells. In this case, the mobile sen-
sor(s) with the lowest weight is selected for the target(s)
T. The number of mobile sensors with the lowest weight
can be multiple candidates. For multiple targets and
multiple candidate mobile sensors, we propose two se-
lection methods based on different energy consumption
goals: minimizing total distance traveled and minimiz-
ing maximum distance traveled which will be discussed
in Subsection 4.2. By applying one of these two meth-
ods, candidate mobile(s) is assigned to the selected tar-
get(s) and both of them are removed from the original
sets. Any new uncovered cells produced by reposition-
ing of mobile sensors U’ will be added into the set U.
This procedure continues until either S or U is empty.
The algorithm is presented in Algorithm 1.

4.2 Minimizing Energy Consumption

After computing step 1 and 2 in Algorithm 1, the next
challenge is to assign the mobile sensor(s) to target(s)
locations. In this case, the objective of mobile sensors
is an efficient way of movement from the current loca-
tions to the target positions. Here an efficient movement
means a movement with minimum energy consumption
and minimum distance traveled. If both M and T have a
single element, the mobile sensor will move to the target
location. For the case where a single element is in either
M or T, it will be assigned to the best element of the re-
maining set based on M1 or M2 as shown in Algorithm
1. For multiple return values in both M and T, an effi-
cient method for the optimal mapping of mobile sensors
to targets is required. We highlight the case of multiple
elements in both M and T and assume that ||T'|| = || M]|.
The assumption can be relaxed by selecting randomly

from a larger set if | T|| # ||M]|. Then the problem
is for a given set of mobile sensors M = {s1,s2,...,5p}
and a set of targets T = {c1, ¢a, ..., ¢, }, what is the op-
timal assignment of sensors to targets with respect to
minimizing energy consumption. We reduce the mini-
mizing energy consumption problem into a minimizing
distance problem under the assumption that the energy
consumption for locomotion is linearly proportional to
the moving distance. In the following, we introduce two
approaches of minimizing energy consumption.

Algorithm 2 Sensors-Targets-Assignment (M2).

Given: a cost matrix A of p X p
Begin:
min:=min {a; ;}, max:=max {a; ;}
while min<max do
mid:=mid {a; ;}
min _max=max
while mid> 0 do
if (Is_Feasible (A,mid))
max=mid, min_max=mid
else
min=mid
mid=mid {a; ;}
end if
end while
end while
Return min_max
Select a matching by choosing a set of zeros
Apply the matching to the original matrix A

Is_Feasible(A,mid)
while Ja; ;< mid do
a;j:=0
if Vi,4’, 4,7 3a;,;j,a,
return false
else
return true
end if
end while

j# = 0 such that il =i’ and j! = j

Minimizing total distance traversed (M1).

The goal is to minimize the sum of the shortest dis-
tances d;; from each mobile sensor s; € M to the tar-
get ¢; € T. The problem is similar to the well known
Linear Sum Assignment Problem (LSAP) [2] where n
sources need to be assigned to n tasks on a 1-to-1 basis
while minimizing the total cost. In our problem, the
cost function is the Euclidean distances between mobile
sensors and targets. The optimization problem can be

formulated as
min. Z Z Q4,5 Tj 5

i,JEM,T

subject to

DD wig =1

i,j€EM,T
A5 Z 0.

Minimizing maximum distance traversed (M?2).

The goal is to minimize the maximum distance d;;
from any mobile sensor s; € M to its target c¢; € 1. This
problem is comparable to a linear bottleneck assignment
problem (LBAP) [4] where n sources need to be assigned
to n tasks on a 1-to-1 basis while maximal cost among
individual assignment is minimized. The cost function
is the Euclidean distances between mobile sensors and



targets. The corresponding optimization problem can
be defined as:

min. Max ;i T; i
ijem,r 7T

DD wig =1

i,jEM,T
aij > 0.

subject to

The value of x;; is 1 if mobile sensor s; is assigned to
target c; and a; ; is the cost matrix which is the Eu-
clidean distance between the current mobile sensor s;
to target ¢;. We apply the Hungarian method [7] which
is used to find the optimal assignment for a given cost
matrix. Due to space limitations, we highlight the min-
imizing maximum distance algorithm which is based on
Hungarian method with a threshold algorithm and a bi-
nary search algorithm [2], as described in Algorithm 2.
In brief, the algorithm sorts the cost matrix in ascend-
ing order and sets the upper and the lower bounds as
maximum and minimum values. Then it checks for the
feasibility of a solution given the median between the
upper and lower bounds. If there is a feasible solution,
then it sets the upper bound to the median, otherwise,
the lower bound is set to the median. The value of
a;; is set to zero if a, ; is less than the median. Next,
a new median is computed with new upper and lower
bounds. These steps are repeated recursively until the
median is null and the minimum of the maximum val-
ues is returned. Once the minimum of maximum cost
is computed, it selects zeros from each row and column
such that no row and column has a zero element se-
lected twice or more. Finally, the algorithm applies the
matching to the original matrix, thus each mobile sen-
sor is assigned to a unique target so that the maximum
distance moved by any sensor can be minimized.

5. PERFORMANCE EVALUATION

5.1 Experimental Set Up

A discrete event network simulation framework OM-
NeT++ [1] is used to evaluate the performance of our
mobility algorithm. We investigated networks of vary-
ing side length from 200 m to 700 m. A sensing range of
11m and 22m are considered. Initially, the network is
divided into hexagon cells. The results are averages of
100 to 1000 independent scenarios.

5.2 Evaluation of Mobility Algorithm

First of all, we evaluate the mobility algorithm for
coverage performance without consideration of the
energy consumption issue under three network areas:
300m x 300 m, 400 m x 400 m, and 600 m x 600 m. The
goal of this experiment is to evaluate the performance
of the mobility algorithm under the best proportion of
static and mobile sensors proposed in Section 4. In each
scenario, we analyze ten instances where the number of
mobile sensors varies for a fixed number of static sensors

(from 100% to 0% with a reduction of 10%) until the
region is fully covered. The results are compared with
the analytical result as presented in Figure 3. The
simulation results of three networks are very similar.
It shows that the mobility algorithm scales very well.
Furthermore, the mobility algorithm achieves a better
performance than the analytical results, in particular,
the networks with less than 45 % of mobile sensors. For
the network with a higher fraction of mobile sensors a
higher mobile node density is required to guarantee a
full coverage. The reason is that only a single movement
of each mobile sensor from its initial location to its
target is applied in our proposed mobility algorithm.
Multiple movements of mobile sensors can increase the
coverage performance especially for a network with a
higher fraction of mobile sensors. On the other hand,
limited mobility is considered in a hybrid network thus
our proposed analytical model and mobility algorithm
for a hybrid WSN can guarantee a full coverage with
high probability.

—— analytical result

—— simulation result: 300mx 300m|
simulation result: 400m x 400m|

——  simulation result: 600m x 600m|

A= 0451 and A, = 0.55)

static node density

0.5 1.0 15
mobile node density

Figure 3. Analytical vs. simulation results of A\s; and \y,.

To evaluate the proportion of mobile to static sensors
as presented in Section 3, we analyze coverage proba-
bility under varying the number of static and mobile
sensors. Initially, the number of static sensors (ng =
40, 180, 320) is fixed and mobile sensors are added and
mobility algorithm is applied at a time until the network
is fully covered. Finally, the required number of mo-
bile nodes is computed. Then we evaluate the propor-
tion of mobile and static sensors that guarantees a full-
coverage. According to Table 1, the corresponding ana-
lytical results of mobile sensors are 118, 89, and 58 with
the node density 1.13, 0.84, and 0.55 respectively. The
simulation results of three scenarios are shown in Fig-
ure 4 where the required mobile node densities to gain a
full-coverage for ny = 40, 180, 320 are 1.4, 0.7, and 0.5
respectively which are presented as vertical dotted lines.
On average, the proportion of mobile to static sensors
converges to 4.17 which is better than the analytical
result of 4.67 under a network of 200m x 200m with
11 m sensing range and f(A) =+/loglog(A). As we have
already discussed in the previous experiment we can see
a higher coverage gain for a smaller number of mobile
sensors than for a larger number of mobile sensors.
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Figure 4. Coverage probability under varying n; and the
corresponding \,, in a 200m x 200m network with 11m
sensing range.

We also investigate the performance of the mobility
algorithm by comparing it to the optimal deployment.
With the help of the proposed mobility strategy the
networks gain almost a full coverage of the network.
For example, 99.6 % of the network is fully covered in a
200m x 200 m network whereas a 300m x 300m net-
work is covered at 98.36 %.

Next, we evaluate energy consumption due to
node mobility.  Three scenarios (200m x 200m,
500m x 500m, and 700 m x 700 m) are conducted and
the results are shown in Figure 5. Three strategies
are analyzed for their energy consumption with respect
to the moving distance by mobile sensors as energy
consumption is directly proportional to the Euclidean
distance. We apply each strategy in the MaxCoverage-
MobileSensor-Reposition algorithm where the assign-
ment of mobile sensors to targets is selected randomly
in random strategy without optimization for distance
movement. As the name describes the min.total strat-
egy is applied in M1 while the min.max strategy is
used in the M2 approach. The value of the y-axis is
the average or maximum movement per side length
of the region. For example, the min.max strategy
has 0.4 times the side length of the region 200 m area
which is equivalent to a maximum distance of 80m.
As we expected, the min.total strategy minimizes the
total moving distance whereas the min.max strategy
provides the lowest maximum distance. Using the
min.total strategy, on average each mobile has to move
42'm, 65m, and 72m for the network with side length
200m, 500m, and 700 m, respectively. The min.total
strategy reduces the average distance by at least 60 %
compared to the random strategy. According to the
experimental results, the min.max strategy can mini-
mize the maximum distance by at least 35 % and 60 %
compared to the min.total and random strategy, respec-
tively. Both the min.total and the min.max strategy
perform better for the larger networks. The choice on
which strategy is to be used on a specific application is
dependent on the application’s desired goal, whether to
reduce the maximum distance or the average distance.
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Figure 5. Comparisons of different energy consumption
strategies.

6. CONCLUSION

We proposed an analytical model of a hybrid WSN, in
particular, the optimal ratio of static and mobile node
density. The mobility algorithm with respect to optimal
repositioning of mobile sensors and minimizing energy
consumption is developed for the mobile portion of sen-
sors. In this paper, we analyzed the performance of the
proposed mobility algorithm for one time repositioning
of mobile nodes. However, the proposed mobility algo-
rithm can extend to multiple repositionings of mobile
sensors whenever topology changes or node failures oc-
cur. Finally, the analytical result is validated with sim-
ulation results. The results show that the proposed an-
alytical model and mobility algorithm can achieve a full
coverage with high probability. Using the optimal repo-
sitioning approaches the energy consumption by mobile
sensors can reduce from 60 % to 80 % effectively.
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