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Abstract

During the last two decades, starting with the seminal work by Cruz,
network calculus has evolved as a new theory for the performance analysis
of networked systems. In contrast to classical queueing theory, it deals
with performance bounds instead of average values and thus has been
the theoretical basis of quality of service proposals such as the IETF’s
Integrated and Differentiated Services architectures. Besides these it has,
however, recently seen many other applications scenarios as, for example,
wireless sensor networks, switched Ethernets, avionic networks, Systems-
on-Chip, or even to speed-up simulations, to name a few.
In this paper, in an attempt to improve the versatility of network calculus,
we extend its reach to error-prone wireless links employing ARQ schemes.
This is based on a stochastic extension of data scaling as introduced in
[17]. Modelling the single node case with retransmissions results in a set
of equations which are amenable to a fixed point solution. This allows to
find the arrival constraints of each flow corrsponding to a certain number
of retransmissions. Based on the description of each retransmission flow,
probabilistic performance bounds for a wireless system with ARQ can be
derived. To illustrate the actual procedures, a numerical example wraps
up the paper.

Keywords: Performance bounds, network calculus, wireless channel, stochas-
tic scaling, ARQ.
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1 Introduction

1.1 Motivation
Network calculus is a min-plus system theory for deterministic queuing systems
which builds on the calculus for network delay in [12], [13]. The important
concept of service curve was introduced in [14, 27, 9, 24, 2]. The service curve
based approach facilitates the efficient analysis of tandem queues where a linear
scaling of performance bounds in the number of traversed queues is achieved as
elaborated in [11] and also referred to as pay bursts only once phenomenon in
[25]. A detailed treatment of min-plus algebra and of network calculus can be
found in [4] and [25], [10], respectively.

Network calculus has found numerous applications, most prominently in the
Internet’s Quality of Service (QoS) proposals IntServ and DiffServ, but also
in other scenarios as, for example, wireless sensor networks [28, 23], switched
Ethernets [30], Systems-on-Chip (SoC) [7], or even to speed-up simulations [22].
Hence, besides queueing theory it has established as a valuable methodology.

However, as a relatively young theory, compared to e.g. traditional queueing
theory, there is also a number of challenges network calculus still has to master.
To name a few: recently there has been much interest and progress with respect
to stochastic extensions (see [11], [18], [20] for recent advances); tool support for
network calculus has been addressed by [29], [5] and brings about new interesting
perspectives. A very tough challenge is also found in applying network calculus
in wireless scenarios, where servers may be unreliable and some part of the data
is not delivered at all, i.e. we face a loss system. Most often, the unreliability of
wireless channels is compensated by using ARQ techniques, i.e., retransmission
of lost data. This brings another challenge for a network calculus model as this
essentially introduces feedback into the system. In this paper, we attack these
challenges for the case of a single wireless link that operates under an ARQ
scheme using a stochastic extension of data scaling as introduced in [17]. Being
able to solve the resulting model using a fixed-point approach makes us believe
that we are on a promising way to a wireless network calculus.

1.2 Related Work
While not so much previous research tried to transfer network calculus concepts
into the domain of wireless networks, there is some related work to be discussed
here: Remarkably, one of the earliest research on stochastic extensions of net-
work calculus [16] already introduced a “channel impairment process” to model
a time-varying channel capacity as well as an ARQ component. The model,
however, is very much tied to a specific scheduling algorithm (SCED) to op-
erate on the link. At the time, the concept of scaling, which we use in this
paper to capture the error characteristics of the wireless transmission, had not
yet been introduced in network calculus. Another related work [1] investigates
a network calculus model of a wireless link using the concept of a clipper [15] to
capture data loss. The issue of operating the wireless link with an ARQ scheme
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is briefly discussed but not investigated in further detail, in particular the influ-
ence on the overall service capacity is not taken into account. The paper also
remains unclear how the deterministic clipper component can actually capture
the stochastic behaviour of wireless transmissions errors. In [32], the authors
introduce a so-called effective capacity model of a wireless link, in analogy to the
notion of effective bandwidth. The goal was to capture the time-varying char-
acteristics of a fading channel. Losses and corresponding ARQ schemes were
not considered. Similarly, though following a different analytical approach, [19]
focused on the characterization of a fading channel with memory. In this work,
a network calculus based on moment-generating functions was used to calcu-
late probabilistic performance bounds. Again, the issue of data loss and ARQ
schemes were not subject of this research. In a recent study [33], data loss
has explicitly been taken into account and has been abstracted as a stochastic
process. As in [16], the introduced error process was composed into the server,
in order to propose the so-called error server model. We believe this approach
to lose flexibility compared to using scaling for modelling the data loss process
as done in this paper. With respect to the integration of ARQ schemes, the
paper makes brief mention but it is not central to it. In our work, we focus on
losses due to wireless transmission errors and the influence of ARQ schemes to
compensate for these losses.

1.3 Outline
The remaining sections are organized as follows. In the next section we recall
some important concepts and theorems of network calculus. In section 3, de-
terministic scaling is extended to a stochastic version and some examples of
stochastic scaling are given. In section 4, the model of a wireless link with ARQ
using network calculus is presented and the way to analyse it is derived. In
section 5, a numerical example is given for illustrative purposes.

2 Preliminaries on Network Calculus and Data
Scaling

In this section, we provide the necessary background on deterministic and
stochastic network calculus. Furthermore, previous work of ours on data scal-
ing in network calculus is reviewed as it provides the basis for the work in this
paper.

2.1 Deterministic Network Calculus
As network calculus is built around the notion of cumulative functions for input
and output flows of data, the set F of real-valued, non-negative, and wide-sense
increasing functions passing through the origin plays a major role:

F =
{
f : R+ → R+,∀t ≥ s : f(t) ≥ f(s), f(0) = 0

}
.
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In particular, the input function F (t) and the output function F ′(t), which
cumulatively count the number of bits that are input to, respectively output
from, a system S, are in F .

There are two important min-plus resp. max-plus algebraic operators:
Definition 1: (Min-plus and Max-plus Convolution and Deconvolution)

The min-plus resp. max-plus convolution and deconvolution of two functions
f, g ∈ F are defined to be (here ∧ denotes the minimum and ∨ the maximum
operator)

(f ⊗ g)(t) = inf
0≤s≤t

{f(t− s) + g(s)}, (∧,+ convolution)

(f � g)(t) = sup
u≥0
{f(t+ u)− g(u)}, (∧,+ deconvolution)

(f⊗g)(t) = sup
0≤s≤t

{f(t− s) + g(s)}, (∨,+ convolution)

(f�g)(t) = inf
u≥0
{f(t+ u)− g(u)}, (∨,+ deconvolution)

It can be shown that the triple (F ,∧,⊗) constitutes a dioid [25]. Also,
the min-plus convolution is a linear operator on the dioid (R ∪ {+∞},∧,+),
whereas the min-plus deconvolution is not. Similar statements can be made for
max-plus systems. These algebraic characteristics result in a number of rules
that apply to those operators, many of which can be found in [25], [10].

Let us now turn to the performance characteristics of flows which can be
bounded by network calculus means:

Definition 2: (Backlog and Virtual Delay) Assume a flow with input func-
tion F that traverses a system S resulting in the output function F ′. The backlog
of the flow at time t is defined as

b(t) = F (t)− F ′(t).

Assuming FIFO delivery, the virtual delay for a bit input at time t is defined as

d(t) = inf {τ ≥ 0 : F (t) ≤ F ′(t+ τ)} .

Next, the arrival and departure processes specified by input and output
functions are bounded based on the central network calculus concepts of arrival
and service curves:

Definition 3: (Arrival Curve) Given a flow with input function F , a func-
tion α ∈ F is an arrival curve for F iff

∀t, s ≥ 0, s ≤ t : F (t)− F (t− s) ≤ α(s)⇔ F = F ⊗ α.

A typical example of an arrival curve is given by an affine arrival curve
γr,b (t) = b+ rt, t > 0 and γr,b (t) = 0, t ≤ 0, which corresponds to token-bucket
traffic regulation.
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Definition 4: (Service Curve) If the service provided by a system S for a
given input function F results in an output function F ′ we say that S offers a
minimum resp. maximum service curve β resp. γ iff

F ′ ≥ F ⊗ β, resp.

F ′ ≤ F ⊗ γ.

A typical example of a service curve is given by a so-called rate-latency function
βR,T (t) = R(t− T ) · 1{t>T}, where 1{cond} is 1 if the condition cond is satisfied
and 0 otherwise.

Using those concepts it is possible to derive tight performance bounds on
backlog, delay and output:

Theorem 1: (Performance Bounds) Consider a system S that offers a
minimum and maximum service curve β and γ, respectively. Assume a flow
F traversing the system has an arrival curve α. Then we obtain the following
performance bounds:

backlog: ∀t : b(t) ≤ (α� β) (0) =: v(α, β),
delay: ∀t : d(t) ≤ inf {t ≥ 0 : (α� β) (−t) ≤ 0}

=: h (α, β) ,
output (arrival curve α′for F ′): α′ = (α⊗ γ)� β.

2.2 Stochastic Network Calculus
In recent years, many efforts towards a stochastic network calculus have been
made (see e.g., [8, 34, 16, 31, 6, 3, 11, 18, 21, 26]). Many different definitions
of stochastic extensions of arrival and service curves have been proposed and
discussed. In particular, to provide a stochastic service curve definition that
still allows for a favourable concatenation has shown to be a hard problem for
some time. In this section, we simply provide the necessary definitions and basic
results as they pertain to the work in this paper, without delving into the deep
discussions on alternative definitions. Our definitions are mainly based on [6]
and can be seen as direct generalizations of the deterministic network calculus
counterparts.

Definition 5: (Stochastic Arrival Curve) Given a flow with input function
F , a function αε ∈ F is called a stochastic arrival curve for F iff

P (F = F ⊗ αε) ≥ 1− ε.

Note that this definition provides a sample path bound as for example dis-
cussed in [6], where it is also called sample-path effective envelope.

Definition 6: (Stochastic Service Curve) If the service provided by a sys-
tem S for a given input function F results in an output function F ′ we say that
S offers a stochastic service curve βε iff

P (F ′ ≥ F ⊗ βε) ≥ 1− ε
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This definitions follows again [6], where it is called statistical or effective
service curves. Based on these definitions, the following stochastic performance
bounds can be derived (see again [6] for the proof).

Theorem 2: (Stochastic Performance Bounds) Consider a system S that
offers a stochastic service curve βεβ , respectively. Assume a flow F traversing
the system has an arrival curve αεα . Then we obtain the following stochastic
performance bounds:

backlog : ∀t : P (b(t) ≤ v(αεα , βεβ )) ≥ 1− εα − εβ ,
delay : ∀t : P (d(t) ≤ h(αεα , βεβ )) ≥ 1− εα − εβ ,
output : α′ = αεα � βεβ

with P (F ′ = F ′ ⊗ α′) ≥ 1− εα − εβ .

It should be noted that under the stochastic service curve definition being
used here the concatenation of nodes is problematic without further assump-
tions. In particular, the violation probabilities for concatenated service curves
are time-dependent and can therefore be made equal to one, which makes the
guarantees of the concatenated service curve void. Several resorts have been
proposed in the literature, the most obvious being the introduction of time-
scale bounds which avoids the degeneration of the service curve guarantee for
large time durations. We refer the reader to the very good discussion about
these issues in [6]. In this paper, we stay with the straightforward definitions.

2.3 Data Scaling in Network Calculus
In this subsection, we provide the some definitions and results for introducing
scaling elements into network calculus models as presented in [17].

Definition 7: (Scaling Function) A scaling function S ∈ F assigns an
amount of scaled data S(a) to an amount of data a.

As can be seen from the definition of scaling functions, they are a very
general concept for taking into account transformations in a network calculus
model. Note, however, that they do not model any queuing effects – scaling is
assumed to be done infinitely fast. Queuing related effects are still modeled in
the service curve element of the respective component.

Definition 8: (Scaling Curves) Given a scaling function S, two functions
S, S ∈ F are minimum and maximum scaling curves of S iff

S ≤ S�̄S,
S ≥ S � S.

The following corollary states the effect scaling has on arrival constraints of
a traffic flow.

Corollary 1: (Arrival Constraints under Scaling) Let F be an input func-
tion with arrival curve α that is fed into a scaling function S with maximum
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scaling curve S. An arrival curve for the scaled output from the scaling element
is given by

αS = S(α).

3 Stochastic Data Scaling
We base our model of an error-prone wireless link on data scaling. In particular,
lost data is modelled as a scaled version of the output flow of the wireless link.
That means, we first pretend the service to be perfectly deterministic and then
take out some data units according to a scaling process. Obviously, this scaling
process is of stochastic nature and can usually not be bounded deterministically
in a useful manner. Therefore, in this section, along the footprints “arrival
curve→stochastic arrival curve and service curves→stochastic service curves”,
we extend scaling curves to their stochastic counterparts.

3.1 Stochastic Scaling Curves
We provide a straightforward probabilistic interpretation of scaling curves, which
will nevertheless allow us to model realistic error process from wireless channels.

Definition 9: (Stochastic Scaling Curves) Consider a scaling function S.
Any two functions Sε ∈ F and S

ε ∈ F are said to be a minimum resp. maximum
stochastic scaling curve of S if for all b ≥ 0 it holds that

Pr((S�S)(b) ≥ Sε(b)) ≥ 1− ε,

Pr((S � S)(b) ≤ S
ε
(b)) ≥ 1− ε.

Here, ε and ε denote the violation probabilities for stochastic minimum and
maximum scaling curves, respectively.

Note that the stochastic scaling curve properties are defined over sample
paths as realized by the respective scaling function. In the context of stochastic
arrival curves this has also been coined as sample-path effective (see Section
2.2).

In the following corollary we state the influence of stochastic scaling on the
arrival constraints of a flow.

Corollary 2: (Arrival Constraints under Stochastic Scaling) F is an ar-
rival function which is input to a scaling function S with S

ε
and let αεα be a

stochastic arrival curve of F . A stochastic arrival curve of the stochastically
scaled output arrival function FS is given by αS = S

ε
(αεα) with probability

≥ 1− ε− εα.
Proof: Consider a sample path for which neither S

ε
nor αεα is being violated.

For all such sample paths we obtain from Corollary 1 that αS = S
ε
(αεα) is an

arrival curve. The probability for being on such a sample path can be computed
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as

P (FS(t)− FS(s) ≤ Sε(αεα))

≥ P ({αεα not violated} ∧ {Sε not violated})
≥ 1− ε− εα

due to Boole’s inequality, which establishes the claim of the corollary.�
Because scaling is considered to have no delay and backlog, the definitions

of backlog and virtual delay bounds of stochastic scaled server are the same as
theorem in 2.1 resp. 2.2.

3.2 Binary Symmetric Channel as Stochastic Scaling
To illustrate how the error process of a wireless channel can be captured with
stochastic scaling, we assume provide the case of binary symmetric channel
(BSC) as an example. More complicated channel models can also be captured,
however for the ease of description we restrict the discussion here on the BSC.

The bit loss process of a BSC is an i.i.d. Bernoulli process with parameter θ,
the crossover probability of the BSC. The probability of k bits loss for n arrival
bits can then be calculated as binomial probability

θk(1− θ)n−k
(
n
k

)
.

Based on this formulation, a stochastic upper resp. lower bound of scaling
functions can be formulated as follows

Sεupper(n) =
n∑
k=0

1 k∑
i=0

θi(1−θ)n−i

(
n
i

)
<1−ε


S
ε
lower(n) = [(

n∑
k=0

1 k∑
i=0

θi(1−θ)n−i

(
n
i

)
≤ε


)− 1]+

With n-axis and k-axis, let us imagine these two curves in Figure 1. The
whole sample path space of scaling functions is shown in dotted lines. Note,
each segment of scaling function has a rate equaling 0 or 1, which means “not
lost” or “lost”. The meaning of the curve is: for each n, if we cumulate the
probabilities from 0 to k until the requirement “prob.≥ 1−ε resp. prob.≥ 1−ε”
is satisfied, we can then achieve a number k; connecting such k for each n we
obtain the curves of the bounds.

With the formulation of Sεupper(n) and S
ε
lower(n), two probabilities are in-

troduced and the form of these two formulations seems similar to the definition
of stochastic scaling curves (definition 3.1). Are they really stochastic scaling
curves? We analyze the upper bound for example. The analysis about the lower
bound follows along the same lines. From the meaning of the curve together
with another important argument - BSC is memoryless, we have
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Figure 1: Stochastic scaling curves for BSC.

Pr{S(0, n) ≤ Sεupper(n)} ≥ 1− ε

BSC is memoryless⇐⇒

Pr{∀x : S(x, x+ n) ≤ Sεupper(n)} ≥ 1− ε,
where S(x+n)−S(x) is written as S(x, x+n). The latter formulation estab-

lishes Sεupper(n) as a maximum stochastic scaling curve according to definition
9.

It should be noted that, in fact, we can also assume the bit pass behavior of a
BSC as the scaling on the other hand. Such a scaling focuses on the data flow
traversing through and can be defined as the “complementary scaling” of the
bit loss scaling. Then the calculation of stochastic scaling curve will be based
on the probability of k bits pass of n arrival bits.

4 A Network Calculus Model of a Wireless Link
Employing ARQ

In this section, we propose a model for a wireless link that employs an ARQ
scheme to recover from data loss due to channel impairments. The model builds
upon the novel concept of stochastic scaling as introduced in the previous sec-
tion. Based on this model and existing results of network calculus we provide
a method to derive the arrival curves of the retransmitted flows. This method
applies a fixed point approach from which we also obtain stability criteria for
the overall system. Knowing the arrival curves of all the flows in the system,
we are able to derive bounds on backlog, delay, and output. These bounds are
probabilistic in nature due to the stochasticity of the scaling.

4.1 Basic Model and Assumptions
Wireless links are inherently error-prone and, thus, data loss is a common event.
Very often, wireless links, therefore, employ ARQ schemes to compensate for
data loss by retransmissions. The data loss process can be captured in a network
calculus model by a stochastic scaling element as elaborated for the example of
a BSC channel in Section 3.2. Now, what is lost has to be retransmitted, so we
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Figure 2: Network calculus of wireless link with ARQ.

feedback the lost data units to the entrance of the server, whose transmission re-
sourcesare modelled using maximum and mimumum service cuves. This fedback
retransmission flow would in reality be acknowledgment packets that indicate
which data units are missing. Hence, a delay, modelled by a service curve δT ,
for this feedback may be included into the model. Note that retransmitted data
units may have to be retransmitted again, resulting in further retransmitted
flows. We make the assumption, which holds true in most practical implemen-
tations, that there is a limit on how often data is being retransmitted. This
model of a wireless link employing ARQ is depicted in Figure 2.

In this model, we distibguish between different retransmission flows, those
consisting of data units being retransmitted once, twice, and so on. Correspond-
ingly, we denote all flows in the system as α(0) = α, α

(1)
ε1 , ..., α

(i)
εi , where we set

i as the limit for the number of retransmission for a single data unit. Note
that the arrival curves, apart from the original flows, are stochastic due to the
stochasticity of the scaling element that models the loss process (according to
Corollary 2). All flows are effectively multiplexed over the wireless link. We
make the practical assumption that retransmission flows with higher index, i.e.
with data units that have been lost more often so far, are given priority over
flows with lower index. Note, however, that this assumption is not essential for
what follows.

In the next section, we explicitly derive the arrival curves for all retrans-
mission flows. We do this under a deterministic interpretation of all arrival,
service, and scaling curves under investigation. Since, originally only the scal-
ing behaviour is bounded stochastically, this means the arrival curves only apply
for those sample paths of the overall system for which the scaling curves apply.
In Section 4.3, we then show how we can derive probabilistic bounds based on
this observation.

4.2 Arrival Curves of Retransmission Flows
If we consider that retransmission flows with higher indices have higher priority,
we can use existing network calculus results on priority multiplexing to obtain
the following formulations for the service and arrival curves of each retransmis-
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Figure 3: Self-feedback equation system.

sion flow:

β(0) = [β −
i∑

k=1

α(k)]+ α(0) = α

β(1) = [β −
i∑

k=2

α(k)]+ α(1) = S
ε
(α(0) � β(0))� δT

β(2) = [β −
i∑

k=3

α(k)]+ α(2) = S
ε
(α(1) � β(1))� δT

... ...

β(i) = β α(i) = S
ε
(α(i−1) � β(i−1))� δT

If we combine the two sets of equations and, for the sake of simplicity, ignore
the retransmission delay, i.e., δT = δ0, we obtain the following formulations:

α(0) = α

α(1) = S
ε
(α(0) � [β − α(1) − α(2) − ...− α(i)]+)

α(2) = S
ε
(α(1) � [β − α(2) − α(3) − ...− α(i)]+)

...

α(i) = S
ε
(α(i−1) � [β − α(i)]+).

Our goal is to find explicit formulations of α(1), α(2), ..., α(i). The alert
reader will have realized that each equation implies a self-feedback problem,
i.e., the arrival curves of the retransmission flows depend on themselves. We
follow a fixed-point approach to resolve this issue of self-feedback. In fact, we
can abstract the above equations as a mapping as shown in Figure 3. By dint of
fixed point theory, we can interpret our equation system as a mapping T , which
takes the input αn = (α(1), α(2), ..., α(i))n and produces the output αn+1. So the
problem is transformed into finding a fixed point of T , following the recursive
rule αn+1 = Tαn. So, if T makes αn convergent, we can consequently solve for
all the arrival curves of retransmission flows.

To solve the fixed-point problem in general is hard, if not even impossible
without further assumption. In this paper, we follow a pragmatic approach
where we assume affine arrival curves, i.e. token bucket functions, and rate-
latency functions as service curves. Under these assumptions, assessing the
convergence of the mapping T is much simplified, yet the this choice of arrival
and service curves still covers a lot of practical applications. Similarly, we also
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Figure 4: Illustration of the calculation for one retransmission flow.

restrict the scaling curve S
ε
to be an affine curve without too much loss of

generality. In particular, we set S
ε
(x) = Cx+ B, where we assume B ≥ 0 and

0 ≤ C < 1. The latter condition is actually necessary for the mapping T to
be convergent, since otherwise the scaling would not act as a contractor but
an expander such that αn would diverge to infinity. The investigation of more
complicated arrival, service and scaling curves is left for your future work, but
we believe it can follow a similar line of argument.

For illustrative purposes, we demonstrate the derivation of the arrival curves
of retransmission flows for three cases: a single retransmission, two retransmis-
sions, and the general case of i retransmissions. The case of a single retransmis-
sion flow we look at in a very detailed, whereas for the other cases we mainly
outline the differences and generalizations.

(1) i = 1 ↔ one retransmission flow
We know α(0) = α, α(1) = S

ε
(α(0) � β(0)) = S

ε
(α � [β − α(1)]+). It is to

be checked whether the mapping for α(1) is convergent and what is the fixed
point of the mapping α(1)

∞ . Put differently, the task is to check whether there is
a convergent limit b∞ for b1 and what is its value, if we set the initial input of
α(1) as α(1)

1 = γCr,b1 . Note, that we set the rate of α(1) as Cr. This is because
whatever rate of α(1) we set, after the deconvolution α � [β − α(1)]+, the rate
will be limited to the rate of α i.e. r; and after the invokation of the scaling
curve, S

ε
(x) = Cx+B, the rate of α(1) will finally always become Cr.

What we do next is a step-by-step calculation of the formulation α(1) =
S
ε
(α�[β−α(1)]+) until we achieve enough information to assess its convergence

and areable to calculate the fixed point value b∞ of b1, b2, .... This process is
depicted in Figure 5 and explained in the following steps.

(a) Calculate curve [β − α(1)
1 ]+ = βR−Cr,T1 with T1 according to

CrT1 + b1
T1 − T

= R =⇒ T1 =
RT + b1
R− Cr

.

(b) Calculate α� [β − α(1)
1 ]+. Draw a line at point (−T1, b) with rate equal
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to the rate of the arrival curve α, which is r. Now calculate b′2 as

b′2 − b
T1

= r =⇒ b′2 = rT1 + b.

(c) At last, calculate α(1)
2 = S

ε
(α� [β − α(1)

1 ]+):

α
(1)
2 = γCr,b2 with b2 = Cb′2 +B = C(rT1 + b) +B.

Repeat (a), (b) and (c) for α(1)
2 , and we obtain

b3 = Cb′3 +B

b′3 = rT2 + b =⇒ b3 = C(rT2 + b) +B

CrT2 + b2
T2 − T

= R =⇒ T2 =
RT + b2
R− Cr

.

Repeat again to obtain b4 = C(rT3 + b) + B and so on. That means the
convergence of α(1) depends on the sequence of T1, T2, T3, ... We can write this
sequence as follows:

T1 =
RT + b1
R− Cr

T2 =
RT + b2
R− Cr

=
RT + C(rT1 + b) +B

R− Cr

T3 =
RT + b3
R− Cr

=
RT + C(rT2 + b) +B

R− Cr
...

Ti =
RT + bi
R− Cr

=
RT + C(rTi−1 + b) +B

R− Cr

=
Cr

R− Cr
Ti−1 +

RT + Cb+B

R− Cr
.

And for the bucket depths we obtain:

bi = (R− Cr)Ti −RT.

For the deconvolution α� [β − α(1)]+ to exist, it must hold that

lim
t→∞

[β − α(1)]+(t)
t

≥ lim
t→∞

α(t)
t

=⇒ R− Cr ≥ r

=⇒ Cr

R− Cr
≤ C < 1.

This result constitutes a stability criterion for the system, which is also very
intuitive. In fact, R > r + Cr means the long-term capacity of the server can
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Figure 5: Illustration of the calculation for two retransmission flows.

satisfy the long-term needs of the original and the retransmitted flow. Apply-
ing this stability condition Cr

R−Cr < 1 to Ti = Cr
R−CrTi−1 + RT+Cb+B

R−Cr , we can
conclude that the sequence of Ti is convergent, i.e., there is a fixed point T∞
with

T∞ =
RT + Cb+B

R− 2Cr
.

Finally, we can calculate the arrival curve of the retransmission flow

α(1) = γCr,b∞ , where

b∞ = (R− Cr)T∞ −RT = (R− Cr)RT + Cb+B

R− 2Cr
−RT.

(2) i = 2 ↔ two retransmission flows
In this case, the basic equations are as follows:

α(0) = α

α(1) = S
ε
(α(0) � β(0)) = S

ε
(α� [β − α(1) − α(2)]+)

α(2) = S
ε
(α(1) � β(1)) = S

ε
(α(1) � [β − α(2)]+)

As initial input we set α(1)
1 = γCr,b11 and α(2)

1 = γC2r,b21 . Again, it has to be
checked whether the mapping for (α(1), α(2)) is convergent and what are is the
fixed point of the mapping (α(1)

∞ , α
(2)
∞ ). What we do is illustrated Figure 5.

Since the calculation process of this case is in principle very similar to the case
of one retransmission flow, the calculation steps (a), (b), and (c) are not given
here again. The main difference is that α(1)

1 and α(2)
1 affect each other.

Through similar steps as for the one retransmission flow case and again
letting n→∞, we obtain the following equation system

14



(
R2 − 2(C2 + C)r −C2r

−C2r R− 2C2r

)(
T1,∞
T2,∞

)
=(

RT + Cb+ C2b+B + CB +B
RT + C2b+ CB +B

)
.

Then we can use Cramer’s Rule to assess if there are roots in R+ for both
T1,∞ and T2,∞. Positive roots imply convergence and can serve as a stability
criterion for the overall system. Finally, if the fixed point exists, we get the
arrival curves of α(1) and α(2) as

α(1) = γCr,b1,∞ , with

b1,∞ = CrT1,∞ + Cb+B,

α(2) = γC2r,b2,∞ , with

b2,∞ = C2rT2,∞ + C2rT1,∞ + C2b+ CB +B.

(3) i = k ↔ k retransmission flows
Because the calculation process for i > 2 is essentially the same as for i = 2,

we ignore the details here and provide directly the results. First, for stability,
the intuitive condition R > (1 +C +C2 + ...+Ck)r = 1−Ck+1

1−C r applies. It may
be noted that this inequality may be used as a tool to adjust the server capacity
or the input flow rate. The equation system to be solved for the fixed point
solution becomes

A× (T1,∞, T2,∞, ..., Tj,∞, ..., Tk,∞)t = φ, where

A =



R− 2r
k∑
i=1

Ci −r
k∑
i=2

Ci . . . −r
k∑
i=k

Ci

−r
k∑
i=2

Ci R− 2r
k∑
i=2

Ci . . . −r
k∑
i=k

Ci

...
...

. . .
...

−r
k∑
i=k

Ci −r
k∑
i=k

Ci . . . R− 2r
k∑
i=k

Ci



φ =



RT + b
k∑
i=1

Ci +B ·
k−1∑
p=0

p∑
q=0

Cq

RT + b
k∑
i=2

Ci +B ·
k−1∑
p=1

p∑
q=0

Cq

...

RT + b
k∑
i=k

Ci +B ·
k−1∑
p=k−1

p∑
q=0

Cq


.

Hence, we use Cramer’s Rule to derive T1,∞ = det(A1)
det(A) , T2,∞ = det(A2)

det(A) , ..., Tk,∞ =
det(Ak)
det(A) , where Ai is the matrix A with the ith column of A replaced by φ. If
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all roots are positive, then a fixed point exists. In this case, the arrival curves
of all k retransmission flows are given as follows for j = 1, . . . , k

α(j) = γCjr,bj,∞ , with

bj,∞ = Cjr(Tj,∞ + Tj−1,∞ + ...+ T1,∞)
+Cjb+ (Cj−1 + ...+ C + 1)B

4.3 Performance Bounds
In the previous section, we have demonstrated how to derive the arrival curves
for each retransmission flow α(i) and, consequently, also the service curves β(i) as
seen by each of these flows. As discussed above the arguments were given under
a deterministic interpretation of arrival, service, and scaling curves. However,
for the derivation of performance bounds we now need to take into account
the stochastic nature of the wireless channel and therefore of the scaling curve,
which captures this stochastic behaviour.

At first, let us assume we are on a sample path of the overall system, where
the scaling of each of the flows, original and retransmissions, does not violate
the scaling curve S̄ ε̄. In this case, we can derive for each flow its delay bound as
h(α(i), β(i)). Since a particular data unit may encounter up to i retransmissions
we obtain a delay bound as

∀t : d(t) ≤
i∑

j=0

h(α(j), β(j))

Note again that this delay bound only necessarily applies if the scaling as
perceived by each of the flows does not violate the scaling curve S̄ ε̄. Now each of
the flows only experiences a partial realization of the scaling function, which we
may call Sj . If we further denote S

εj
j as stochastic scaling curve for Sj , it can

be shown that given stationarity of the increment process of S, i.e. stationarity
of the error process of the channel, Sj has the same stochastic properties as S
and therefore we can set S

εj
j = S̄ ε̄. Since most error processes can be considered

stationary, this assumption is a mild one and we can calculate a probabilistic
delay bound as follows

P (d(t) ≤
i∑

j=0

h(α(j), β(j))) ≥ P (
i∧

j=0

{Sεjj applies})

≥ 1−
i∑

j=0

εj = 1− (i+ 1)ε̄,

where we used Boole’s inequality again.
Similar reasoning we can apply to compute a probabilistic backlog bound

for all of the flows as

P (b(t) ≤ v(α(0) + α(1) + ...+ α(i), β)) ≥ 1− (i+ 1)ε̄.
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5 Numerical Example
In order to illustrate the application of the model, let us go through a simple
numerical example in this section. First, the necessary assumptions are given.

Assumptions: Consider the scaler to be a BSC with bit loss probability
θ = 0.1. The scaler has two complementary scaling behaviors: S and Scompl,
which represent bit loss scaling and bit pass scaling, respectively. The arrival
curve of the input flow is α = γr,b = γ0.5,3. The minimum service curve is
assumed to be β = βR,T = β0.8,3. Let the violation probabilities of the scaling
curves be ε = 0.01 and ε = 0.01, respectively. We also assume a maximum of
two retransmission attempts for each data unit, i.e., i = 2.

Target of Calculations: The arrival curves of all the retransmission flows;
performance bounds.

Basically, the calculation is divided into three parts: (i) analyze the wireless
channel and construct the stochastic scaling curves, (ii) calculate the arrival
curves of all retransmission flows, and (iii) calculate the performance bounds.

(i) Construction of Scaling Curves. The wireless channel is a BSC
with bit loss probability θ = 0.1 and the violation probability for the maximum
stochastic scaling curve is set to ε = 0.01. Recall the formulation S

ε
(n) from

Section 3.2. We want to draw its graph. Since it is rather hard to compute
the curve for each n, we may do sampling for n and draw S

ε
(n) approximately.

Connecting all the sampled values for n, we may derive a violated maximum
stochastic scaling curve. If, however we always make sure to only use points
for which S

ε
(n) > S

ε
(n − 1), by searching in the neighbourhood of a sample

point, we can, when connecting all such points, derive a non-violated maxi-
mum stochastic scaling curve. Together with the complete scaling curve, the
respective sampled scaling curves are depicted in Figure 6.

For further calculation, we should further simplify this maximum stochastic
scaling curve as an affine function S̄ ε̄(x) = Cx+B. Certainly, the approximate
scaling curve should simulate the original curve as accurately as possible. In
fact, many methods to calculate C and B can be conceived. In this example we
only do some simple comparisons to obtain a solution, resulting in C = 0.1250
and B = 5.8750 (when connecting points (n, k) = (185, 29) and (193, 30)).

(ii) Calculation of Arrival Curves of Retransmission Flows. It is
assumed that the number of retransmission flows i is given, we let i = 2. In
accordance with the notations introduced in Section 4.2, we have

A =
(

0.6594 −0.0078
−0.0078 0.7844

)
, φ =

(
15.3063
9.0563

)
.

By solving this equation system, we finally obtain α(1) and α(2) as

α(1) = γCr,b1,∞ = γ0.0625, 7.7096

α(2) = γC2r,b2,∞ = γ0.0078, 6.9307.

Compare the rate of α and α(1): the rate of α(1), Cr, is much smaller than
the rate of α. Clearly, this is because α(1) is the retransmission flow caused
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by data loss and the probability of data loss is not too high, which means
that the effect of the retransmission flow will be rather weak. Consequently,
the retransmission flow of α(1), α(2) is even weaker. Let us compare b with b1
and b2: b1 = 7.7096 > b2 = 6.9307 > b = 3. Essentially, b as the original
flow’s parameter should intuitively be greater than b1 and b2. Yet, the way
the parameters C and B were determined causes this not to be the case and
actually the parameter choice could be formulated as an optimization problem.
We leave this for future work, however, it is not too hard to conceive at least a
numerical optimization procedure. All arrival curves are depicted in Figure 7.

(iii) Calculation of Performance Bounds. Based on the arrival curves
of all the flows in the system, original and retransmission, we can now derive
probabilistic performance bounds.

Delay Bounds:
With α(1) and α(2), the straightforward delay bounds for each flow, original

and retransmission, are easy to calculate:

d0(t) ≤ d̄0 = h(α, [β − α(1) − α(2)]+) = 27.4642,
d1(t) ≤ d̄1 = h(α(1), [β − α(2)]+) = 21.5104,
d2(t) ≤ d̄2 = h(α(2), β) = 11.6634.

As more interest is usually in the delay of a given data unit, which may
be retransmitted, we calculate the following probabilistic delay bound which
applies to all data units for all times t:

P (d(t) ≤ d̄0 + d̄1 + d̄2 = 60.6380) ≥ 1− 3 · ε = 0.97

This delay bound is certainly conservative: the scaling curve approximation
already is conservative and, furthermore, many data units will not be retrans-
mitted twice, such that the violation probability should actually be smaller than
above. Optimizations along these lines are left for future work.

Backlog Bounds:

b0(t) ≤ v(α, [β − α(1) − α(2)]+) = 14.6764
b1(t) ≤ v(α(1), [β − α(2)]+) = 8.4457
b2(t) ≤ v(α(2), β) = 6.9541

The cumulative probabilistic backlog bound is computed as

P (b(t) ≤ v((α+ α(1) + α(2)), β) = 19.3512) ≥ 0.97.

Output Bound:
The calculation of an output bound applies the complementary scaling func-

tion, i.e., the bit pass scaling. In principle, the calculation process is similar to
the computation of the arrival curves of retransmission flows. The respective
results are omitted here.
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6 Conclusion
In this paper, we believe to have made a promising first step on the way to a
wireless network calculus. Based on the stochastic extension of data scaling in
conventional network calculus we showed how to model the error-prone trans-
mission behaviour of a wireless link. Moreover, we also integrated the typical
handling of transmission errors in wireless links by ARQ mechanisms. To solve
the model for a single node case involved a fixed-point analysis yielding stability
conditions as well as probabilistic performance bounds. In a numerical example
we illustrated how to apply the theoretical results.
For future work many open issues remain. Let us mention two of the most
challenging ones: Clearly, the multiple node case will be an interesting chal-
lenge if the concatenation principle is to be carried over to a tandem of wireless
links with ARQ. Also, as briefly discussed in Section 4, there is potential for
an improved stochastic analysis to arrive at lower violation probabilities for the
performance bounds.
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