
1

Delay Bounds Calculus for Variable Length Packet
Transmissions under Flow Transformations

Hao Wang and Jens Schmitt
DISCO | Distributed Computer Systems Lab

University of Kaiserslautern, Germany
Technical Report No. 390/14

Abstract—A fundamental contribution of network calculus is
the con- volution-form representation of networks which enables
tight end-to-end delay bounds. Recently, this has been extended
to the case where the data flow is subject to transformations on
its way to the destination. Yet, the extension, based on so-called
scaling elements, only applies to a setting of identically sized data
units, e.g., bits. In practice, of course, one often has to deal with
variable-length packets. Therefore, in this paper, we address this
case and propose two novel methods to derive delay bounds for
variable-length packets subject to flow transformations. One is
a relatively direct extension of existing work and the otherone
represents a more detailed treatment of packetization effects. In a
numerical evaluation, we show the clear superiority of the latter
one and also validate the bounds by simulation results.

I. I NTRODUCTION

Network calculus has been established as a promising
approximative approach to queueing theory. Simply speaking,
by using inequalities instead of equalities, it can circumvent
some long-standing fundamental problems in queueing theory,
especially in networks with non-Poisson arrivals and multiple
nodes. Network calculus was originally conceived by Cruz [5]
in the early 1990s and soon after by Chang [2]. Subsequently,
many researchers have contributed to it ([3], [12], [9]). The
high modelling power of the network calculus has been
transposed into several important applications for network
engineering problems: traditionally in the Internet’s Quality
of Service proposals IntServ and DiffServ, and more recently
in diverse environments such as for example wireless sensor
networks [11], [15], switched Ethernets [16], System-on-Chip
(SoC) [1], or even to speed-up of simulations [10].

A key to good performance bounds is theconvolution-form
expression of multi-node networks. If we describe the service
provided by a nodei as a lower bound processSi(s, t) for
time 0 ≤ s ≤ t, a tandem ofn nodes also provides a lower
bound for the service process

S1 ⊗ S2 ⊗ · · · ⊗ Sn ,

where “⊗” denotes the(min,+) convolution defined asS1⊗
S2 = inf0≤s≤t{S1(0, s) + S2(s, t)}. As a consequence, the
end-to-end performance analysis can be obtained by applying
a single-node analysis. Yet, this convolution-form has a limi-
tation: the flows in the network are assumed to be transported
unaltered. However, in many real-world applications a data
flow is often transformed during its transfer; for instance,
some parts are lost, routed to another destination, or even

aggregated with other data. Previous work in deterministic
network calculus has proposed the so-called data scaling
element [7] to model such flow transformation. A subsequent
work then introduced the stochastic scaling element [4], which
represents the network in convolution-form and provides a
flexible means of capturing actual transformations. The key
idea therein is to commute the scaling element with a dynamic
server element recursively in order to obtain a single-node
form representation of the network. However, these models
have a limitation: they scale the flow only at the granularity
of identical length data units (bits or packets). This is quite
restrictive as many networks use variable-length packets and
information and events like sending and receiving cannot be
observed at the bit-level. In this paper, we therefore propose
a new scaling element which respects flows as a sequence
of (variable-length) packets rather than just bits. The critical
challenge in defining such a scaling element at the packet-level
is that it should preserve the convolution-form expressionof
multi-node networks. To ease the exposure we focus on an
abstract but widely applicable flow transformation operation:
the demultiplexing of packets, i.e. to thin a flow of packets by
selecting only some of them, e.g. due to network operations
such as routing, load balancing, or simply loss of packets.

We are, of course not the first to treat the case of variable-
length packets (though, to the best of our knowledge we are the
first to take this into account under flow transformations). In
particular, the packetizer element [12], [3] has been introduced
in network calculus to deal with flows of variable-length
packets. [13], [8] have extended it to the stochastic settings.
[13] models heavy-tailed arrivals with packet distributions.
[8] reveals the inherent dependence brought by the packet
process to the arrivals and services. We also use the packetizer
but now in combination with a scaling element in order to
model flow transformations at the packet level. In previous
work of ours [17] we showed a novel model to understand
the demultiplexing for first-in-first-out (FIFO) servers and to
compute tighter end-to-end delay bounds. Yet, for then-node
network to preserve the convolution-form the computation of
the performance measures turned out to be hard. Therefore,
in this paper, we commute the packet-level scaling element
and the dynamic server (as proposed for the bit level in
[4]), in order to provide a tractable end-to-end delay bound
computation.

The rest of this paper is organized as follows. In Section II,
we recall several fundamental definitions of network calculus

2

and provide extensions of some of them under the assumption
of variable length packets. In Section III, we present two
methods to compute the end-to-end delay bounds. The first
is a relatively direct extension of [4], whereas the second
provides a more detailed treatment of the packetization of
flows. In Section IV we compare two methods and compare
them against simulation results. We conclude in Section V.

II. M ODELLING THE DEMULTIPLEXING OF VARIABLE

LENGTH PACKET FLOWS

In this section we first recall the definitions of demultiplex-
ing, the scaling element, and the packetizer. Next, we define
the packet scaling element. Further, we discuss alternative
system models when analyzing the end-to-end delay of a
packet. Throughout the paper, the time model is discrete.

In the framework of network calculus, a data flow from
a source to a destination is modelled by an arrival process
A(t), which counts the number of arriving data units (bits)
in time interval (0, t]. The bivariate form is accordingly
A(s, t) := A(t) − A(s). We also denotea(t) = A(t − 1, t),
i.e., the arriving data units in time slott. We model the
flow departing from a server as the processD(t) with the
corresponding definition. These model the flow of bits. For
many networks, the flow of bits is transformed on the way
to their destination. For example, a flow can be expanded by
some extra data or some parts of the flow can be lost. One
interesting transformation is thedemultiplexing, whereby the
flow is split into multiple sub-flows. For example, if a part
of the original flow is routed to another destination at some
node, then the flow is demultiplexed into two sub-flows, one
for each destination. We denote these as two arrival processes
A(1)(t), A(2)(t) satisfying

A(t) = A(1)(t) + A(2)(t) ,

for all t ≥ 0. If we describe the splitting operation on the
bit-level as an indicator function1{“this bit goes to destination (1)”},
which equals to1 if term true, 0 otherwise, we have that
A(1)(t) =

∑A(t)
i=1 1{“bit i goes to destination (1)”}. Denoting this in-

dicator function for biti asXi, we define thescaling element
as a random processX = (Xi)i≥1 (a more general definition
can be found in [4]). We denote the scaled arrivals asAX(t)
and

AX(t) =

A(t)
∑

i=1

Xi , ∀t ≥ 0 .

Then we can use this scaling element to model the demul-
tiplexing operation. Clearly, with1 = (1, 1, . . .) we get
A(2)(t) = A1−X(t). As we assume that the demultiplexing
operation happens instantaneously, the scaling element has no
queue.

However, in real-world the bits perhaps belong to different
(variable length) packets, and transformations happen on the
whole packet instead of each bit. For the demultiplexing
example, we may simply know the routing probability of a
complete packet to one destination. To model this (packet-
level) demultiplexing operation, we need to extend the scope
of the scaling element. Yet, before we do that, we first integrate

variable length packets into the network calculus framework.
We denote the packet lengths as a sequence of positive integer
random variablesl1, l2, A packet processL(n), n ≥ 1 is
a cumulation of theser.v.’s, L(n) = l1 + l2 + · · · + ln, and
ln = L(n) − L(n − 1) with L(0) = 0. A packet flow is
modelled using the definition of packetizer ([3], [12]).

Definition 1 (Packetizer):Given a packet processL(n) and
an arrival processA(t), anL-packetizer is a network element
expressed by a functionPL(·) satisfying for allA(t), t ≥ 0

PL (A(t)) = L(Nt) ,

where
Nt = max {m : L(m) ≤ A(t)} . (1)

We say that a flowA(t) is L-packetized ifA(t) = PL (A(t))
for any t ≥ 0. So a packet flow is anL-packetized arrival
process. Note, the functionPL is not restricted to a real
network element with a queue, it can also be used to parse
a bit flow (e.g., with marks) into packets and not change its
timing. In the rest of this paper, we will use both meanings.

Now we consider the demultiplexing of a packet flow. We
extend the definition of the scaling element.

Definition 2 (Packet Scaling Element):A packet scaling
element consists of anL-packetized arrival processA(t) =
∑Nt

i=1 li, a packet scaling processX taking non-negative
integer values and a scaled packetized flow defined for all
t ≥ 0 as

AX(t) =

Nt
∑

i=1

liXi .

We can use the packet scaling element to model the transfor-
mation of the packet flow, specifically, the demultiplexing case.
liXi meansli ·1{“packeti goes to destination (1)”}, i.e., demultiplexing
operates on each packet andXi equals either0 or 1.

A packet flow is usually processed or served by a queueing
system before or after being demultiplexed. To analyze the
delay of a packet through this system we distinguish two
models. One is, after being served by each node the output
is always packets, i.e., the bits are packetized by a packetizer
PL. The other is, there is no packetizer after service, yet we
observe from the bit flow the last bit of each packet according
to a packet processL. In previous work [4] we derive the end-
to-end delay bound for the bit flow under flow transformation.
The second case can be a critical challenge for that approach
(L-modulated scaling process and sampling due toL). In
this paper, we focus on the first case and assume that the
packetization is not changed along the path.

In network calculus, we characterize the queueing system
using adynamic server([3]). By convention, we denote it as
S(s, t) for 0 ≤ s ≤ t. Note that it is not the server itself but
only a property of the server. It defines a lower bound process
on the service such that the followingconvolutioninequality
holds for all t ≥ 0.

D(t) ≥ A⊗ S(t) := inf
0≤s≤t

{A(s) + S(s, t)} .

When the inequality holds with equality, we say the dynamic
server isexact. Note that the convolution of two concatenated
dynamic serversS1 ⊗ S2 is still a dynamic server (concept

3

Fig. 1. Network elements: (a) dynamic server, (b) packetizer, (c) packet
scaling element, (d) packetized server.

...

Fig. 2. A network model consisting of packetized arrivals, services and packet
scaling elements.

of convolution-form network). We define apacketized server
as a bit server followed by a packetizerPL, and denote the
dynamic server of it asSL(s, t). Given the dynamic server of
the bit serverS and the packet processL and assuming that
a maximum packet sizelmax exists, we obtain a possibleSL,

SL(s, t) = [S(s, t)− lmax]+ . (2)

The proof follows using a busy time analysis.
We illustrate the network elements in Figure 1. Now we

define the packet delay.
Definition 3 (Packet Delay):A processW (t) is called packet

delay (process), if for allt ≥ 0

W (t) = inf {d ≥ 0 : PL (A(t)) ≤ PL (D(t+ d))} .

Here we assume the service is FIFO. The packet delay is a
virtual delay that would be experienced by a packet which
arrives at timet.

III. E ND-TO-END DELAY OF A NETWORK WITH FLOW

DEMULTIPLEXING

In this section, we compute the end-to-end packet delay for
networks with multiple demultiplexers. According to previous
work, there are two ways to compute the end-to-end delay:
(1) commute service and scaling elements [4], (2) get the
leftover service for the flow of interest if the server uses
FIFO scheduling [17]. In this paper, we use the first, i.e.,
we repeatedly move all the packet scaling elements in front
of the packetized servers and obtain the convolution-form of
the network. Then we calculate the end-to-end delay bounds.
Here, we have two choices: one is to “normalize” the packet
flow as well as the bitwise service with packet size, so that
the observation is directly on each packet irrespective of its
size (→ Section III-A); the other is to use Definition 3 and
derive the delay bound directly through observing the original
bit flow with packetizers (→ Section III-B). For the packet
flow we assume that the packet lengthsli’s are i.i.d. with
lmax < ∞. In fact, this assumption can be justified in many
real-world applications with heterogeneous, large-scale, and
high degree of multiplexing environment.

A. Observing the Packet Flow

Consider Figure 2, we lift our observation of the flow
directly from the bit level to the packet level. This means we

view each packet as a single data unit ignoring its size. Then
we re-express the service this packet receives. After doingso
we can derive the end-to-end packet delay bound directly using
the calculation from [4].

Consider the arrivals consist of packets whose arrival times
are defined as the arrival time of the last bit, we can model
these time jumps with a counting process and together with
a packet size distribution, model the arrival process as a
compound process -A(t) =

∑N(t)
i=1 li, where{N(t), t ≥ 0}

is the counting process, i.e., the number of arriving packets
in time t, and li is the i-th packet size. This seems to be
a slightly different description of a packetized flow, because
here we do not assume a packetizer element in the network.
Yet, the packetized process resulting from packetizer is also
covered by this definition. Consequently, we obtain an arrival
process of packets -{N(t), t ≥ 0}. We call this approach
“normalization” of the bit flow by the packet sizes.

Such a sequence of packets will be served by a service
element described by the bitwise service capacity together
with a packetizer. How much service capacity does a packet
receive? To answer this question is not very hard. For example,
assume that a packet with lengthl will be served by a server
with constant service capacityC bits/s, so the service rate for
this packet isC/l packets/s. This is the “normalization” on
the service side. The constant capacity server is transformed
into a variable capacity server. We write it asSnorm(s, t) =
∑t

i=s c(i) for all 0 ≤ s ≤ t. Here all thec(i)’s are the time
varying capacities of serving a packet at timei.

In [4], we derive the end-to-end delay bounds for a flow with
identically sized data units. The derivation is based on moment
generating function (MGF, denoted byMX(θ) for r.v. X and
any θ > 0, MX(θ) = E[eθX]) bounds of the arrivals and the
services and expresses a network with flow transformations in
a convolution-form. Therein, the servers are assumed to have
constant MGF bounds. However, to use the same derivation is
quite challenging, because now on one hand, the servers have
variable capacities and to know their MGF bounds is hard;
on the other hand, they are “normalized” by the same packet
process and hence dependent of each other.

To obtain the MGF of the dynamic server we can firstly ex-
press the inter-service time. Then we use the (inverse) Laplace
transform of the convolution of inter-arrival times and packet
size distributions to compute thep.d.f. of the inter-service
time. Thirdly, we use renewal theory to obtain thep.d.f. of the
counting process of the service. At last, the MGF follows by its
definition. About the dependency, Hölder inequality mightbe
a solution, but many parameters are introduced. We may also
construct or prove some negative correlations after we use the
Chernoff bound in Theorem 1 of [4]. All of these approaches
lay their focus on the accuracy of the expressiveness, yet,
they lose the analytical tractability. In this section, we just
want to provide a method to calculate the end-to-end delay for
variable-length packet flows that follows closely the approach
in [4] and then compare it against the more sophisticated
method using the packet scaling element. Assume that the bit-
wise capacityS(t) is offered work-conserving with variant
rates and letS(t) ≥ Ct for any t ≥ 0 such that MGF bound
MS(t)(−θ) ≤ e−θCt for θ > 0, then we can vaguely write

4

Fig. 3. Commutation of packetized service and packet scaling.

c(i) ≥ C/lx, wherelx means either some packet length or∞.
We assume the packet size has a limit, i.e.,lx ≤ lmax. Clearly,
c(i) ≥ C/lmax. We obtain a lower bound of this normalized
dynamic serverSnorm(s, t) ≥ C

lmax
(t−s). Now, we represent

the dynamic server as a server with the normalized capacity
- C/lmax. And this solves the above problems at the same
time. Consider the same network scenario as in Theorem 1. We
assume the compound process as the arrivals instead of using
packetizer. We also assumeMSj(t)(−θ) ≤ e−θCjt, j ≥ 1
at each bit server. The end-to-end delay has the following
stochastic bound

Pr(W > d) ≤ Knbd .

We point out, the only difference between this result and
Theorem 1 in [4] is that the MGF bound of each service is

MSnorm
i (s,t)(−θ) ≤ e−θ

Ci
lmax

(t−s) . (3)

We also point out, when we do the “normalization” to the
service, whether there exists a real packetizer component or
not does not change the packet delay analysis, because only
after the last bit of a packet is served by the bit-wise server,
the service of this packet is considered to be finished, this is
just as if there was a packetizer virtually.

B. Observing the Original Bit Flow with Packetizers

In the previous subsection, we provided an approach to
calculate end-to-end delay bounds for variable-lengths packet
flows under flow demultiplexing which observes a flow on the
packet-level rather than the bit level. Now we directly observe
the flow on the bit level as in Figure 2. From [4] we know
when deriving the end-to-end delay bound we should avoid
summing up the delay bounds node-by-node, but rather use
the “pay burst only once” principle. To do so, we express
the network in convolution-form through moving the scaling
elements between two servers to the front. The challenge now
is that the scaling element is not at the bit level anymore.
We provide the following lemma to commute the service and
scaling element at packet-level, which is instrumental to the
derivation of end-to-end delay bounds.

Lemma 1: (COMMUTATION OF PACKET SCALING ELE-
MENT AND DYNAMIC SERVER). Consider system (a) and (b)
with packetized arrivalsA(t) = PL(A(t)) in Figure 3. We
defineTL(s, t) :=

∑Nt

i=Ms+1 liXi as the exact dynamic server
in (b), whereA(s) =

∑Ms

i=1 li, A(s) + SL(s, t) =
∑Nt

i=1 li. If
A, S, X, andL are independent, then for allt ≥ 0,

F (t) ≤ EX(t).

Proof: BecauseTL is an exact dynamic server, we have

F (t) = inf
0≤s≤t

{

AX(s) + TL(s, t)
}

= inf
0≤s≤t

{

Ms
∑

i=1

liXi +

Nt
∑

i=Ms+1

liXi

}

= inf
0≤s≤t

Nt
∑

i=1

liXi,whereA(s) + SL(s, t) =

Nt
∑

i=1

li

=

(

inf
0≤s≤t

Nt
∑

i=1

li

)X

=

(

inf
0≤s≤t

{

A(s) + SL(s, t)
}

)X

≤ EX(t) .

In the fourth line we can use a proof by contradiction.
Through this lemma, we see that there are less departures for
the transformed system than in the original system, which
ensures that the delays are higher. The expression ofTL

looks complicated, but the meaning is clear.
∑Nt

i=Ms+1 li
are the packets served from times to t. And because after
passing through a scaling elementX, only a scaled part of
these packets is sent to the next server, the service they
received should also be a scaled part of the total service.
After recursively using this lemma we get an expression for
the network in terms of a scaled arrival process served by
a dynamic server in convolution-form. The arrivals have the
form



· · ·
(

AX1
)X2

. .
.





Xk

(t) ,

if there are k packet scaling elements. We denote it as
A(k)(t). The alert reader may note that, for the bit flow, the
concatenation of scaling elements can be naturally formulated

as
(

AX1
)X2

(t) =
∑

∑A(t)
j=1 X1,j

i=1 X2,i, whereas for the packet
flow, this is not true any more. We point out that they are just
different in appearance but the same in essence - after each
round of scaling we choose a part of the packets (bits) from the
input flow. Therefore, we provide the delicate expression of
A(k)(t), which will be used in the rest of this section. Assume
anL-packetized flowA(t) = l1 + l2 + · · ·+ lNt

, whereNt is
given in Eq. (1). We first denote the packets respectively the
number of packets in the arrivals until timet after each round
of scaling aslk,i respectivelym(k)

t . Clearly fork > 0

m
(0)
t = Nt ,

m
(1)
t =

m
(0)
t
∑

i=1

1{X1,i>0} ,

· · ·

m
(k)
t =

m
(k−1)
t
∑

i=1

1{Xk,i>0} . (4)

Further we denoteA(k)(t) as

AX1(t) = l1X1,1 + · · ·+ lNt
X1,Nt

= l1,1 + · · ·+ l
1,m

(1)
t

(

AX1
)X2

(t) = l1,1X2,1 + · · ·+ l
1,m

(1)
t

X
2,m

(1)
t

= l2,1 + · · ·+ l
2,m

(2)
t

5

· · ·

A(k)(t) = lk,1 + · · ·+ l
k,m

(k)
t

=

m
(k−1)
t
∑

i=1

lk−1,iXk,i . (5)

Next, we provide two useful lemmas for deriving the end-
to-end delay bounds.

Lemma 2 (Stationarity Bound):Assume that the packetsli’s
of a packet processL are i.i.d. , theXi’s of a packet scaling
elementX are alsoi.i.d. , A and B are two L-packetized
arrival processes, then for alls, t, x > 0,

Pr
(

AX(t)−BX(s) ≥ x
)

≤ Pr
(

(A(t)−B(s))X ≥ x
)

.

Proof: On the one hand we have

Pr
(

AX(t)−BX(s) ≥ x
)

= Pr

(

Nt
∑

i=1

liXi −

Ns
∑

i=1

liXi ≥ x,A(t) > B(s)

)

≤ Pr

(

Nt
∑

i=Ns+1

liXi ≥ x

)

.

On the other hand we know

Pr
(

(A(t)−B(s))X ≥ x
)

= Pr

(

Nt
∑

i=Ns+1

liXi−Ns
≥ x

)

.

Xi’s and li’s are i.i.d. , which completes the proof.
Lemma 3:(RECURSIVE MGF BOUND OF SCALED PRO-

CESS). Assume thatA is an L-packetized process,SL
i is

the packetized server,li’s are i.i.d. with maximal length
lmax < ∞, andXi’s are Markov-Modulated On-Off (MMOO)
loss processes and independent ofA and SL

i , if we denote
Vn−1(θn) as

E

[

e
θ
(

···(A(t−s)−SL
1 (s,u1))

X1−···−SL
n−1(un−2,un−1)

)

Xn−1
]

,

then for all0 ≤ s ≤ u1 ≤ · · · ≤ un−1 ≤ t, andn > 1,

Vn−1(θn) ≤ e−θn−1S
L
n−1(un−2,un−1)Vn−2(θn−1) ,

whereθi > 0, 1 ≤ i ≤ n is given in the proof.
Proof: Let θn = θ, which can be a given value. To

simplify the notation, let us assume
(

· · ·
(

A(t− s)− SL
1 (s, u1)

)X1
− · · · − SL

n−2(un−3, un−2)
)Xn−2

=

P
∑

i=1

li ,

whereP is a r.v. and

SL
n−1(un−2, un−1) =

Q
∑

i=1

li ,

whereQ is ar.v.. Becauseli’s arei.i.d. andXn−1 is a MMOO

loss process, we can see that
(

∑P

i=1 li −
∑Q

i=1 li

)Xn−1

is also

an MMOO process. It hasθ-envelopeRn−1(θ) given in [3],
[4], e.g., for ani.i.d. scaling process,

Rn−1(θ) =
1

θ
logMXn−1(logMl(θ)) .

Thus we obtain

Vn−1(θn) = E






e
θ

(

P
∑

i=1

li−
Q
∑

i=1

li

)

Xn−1





≤ E

[

eθRn−1(θ)(P−Q)
]

.

(6)
To get a bound on the right term above, we first note that,
becauseli’s are i.i.d. ,

M∑

P
i=Q+1 li

(θn−1) = E
[

elogMl(θn−1)(P−Q)
]

. (7)

We can derive a bound on this by usinglmax and noting that
SL
n−1 is independent of otherSL

i ’s andXi’s. So we can easily
obtain the following MGF bound

M∑

P
Q+1 li

(θn−1) ≤ e−θn−1S
L
n−1(un−2,un−1)Vn−2(θn−1) . (8)

Combining Eq. (7) and (8) we have

E
[

elogMl(θn−1)(P−Q)
]

≤ e−θn−1S
L
n−1(un−2,un−1)Vn−2(θn−1) .

Using this bound in Eq. (6) and letting

θnRn−1(θn) = logMl(θn−1) ,

completes the proof. This equation implies everyθi, 1 ≤ i ≤ n
if given θn = θ.
We now derive the end-to-end delay bound and show that it
grows inO(n) wheren is the number of nodes.

Theorem 1:(END-TO-END DELAY BOUNDS IN A PACKET

FLOW TRANSFORMATION NETWORK). Consider the network
scenario from Figure 2 where anL-packetized arrival process
A(t) = PL(A(t)) traverses a series of stationary and (mu-
tually) independent bit level service elements followed byan
L-packetizer and scaling elements denoted bySL

1 , S
L
2 , . . . , S

L
n

and i.i.d. loss processesX1, X2, . . . , Xn−1, respectively. As-
sume the packet lengths ofL - li’s are i.i.d. . Assume the
MGF boundsMA(s,t)(θ) ≤ eθrA(θ)(t−s) andMSk(t)(−θ) ≤
e−θCkt, for k = 1, 2, . . . , n, and someθ > 0. We also
assume that the maximum packet lengthlmax < ∞. Under
a stability condition, to be explicitly given in the proof, for
θi > 0, i = 1, 2, . . . , n, we have the following end-to-end
steady state delay bounds for alld ≥ 0

Pr(W > d) ≤ e(
∑n

i=1 θi+θ1)lmaxKnbd , (9)

where the constantsK and b are also given in the proof.
Moreover, theε-quantiles scale asO(n), for ε > 0.

Proof: First we use Lemma 1 to transform the system
view. To do so, we iteratively commute the packetized server
and the packet scaling elementk times. See Figure 4. Since
the output of the transformed system is smaller than or equal
to the original system, the delay bound of the transformed one
must be larger than or equal to the delay bound of the original
one, hence, we compute the delay bound of this transformed
system.

6

... ...

Fig. 4. Apply Lemma 1 fork times.

Next, fix t, d ≥ 0. Fork, s ≥ 0 we defineU0(s, u0) = A(s),
for u0 = s, and then recursively

Uk(s, uk) =
(

Uk−1(s, uk−1) + SL
k (uk−1, uk)

)Xk

for k ≥ 1 anduk−1 ≤ uk. We prove the theorem at the first
steps by induction. Fork ≥ 1 we assume the following two
statements (S1) and (S2) for the induction:

(S1) Pr(Wk(t) > d) ≤
∑

0≤s≤t

∑

s≤u1≤···≤uk−1≤t+d

Pr
(

A(k−1)(t) > Uk−1(s, uk−1) + SL
k (uk−1, t+ d)

)

,

and for fixeds anduk,

(S2)
(

A(k−1)(s) + TL
k−1 ⊗ SL

k (s, uk)
)Xk

= inf
s≤u1≤···≤uk

Uk(s, uk) ,

whereTL
k is defined recursively asTL

0 (0) = 0, TL
0 (s) = ∞

for all s > 0, and forNs the number of packets inA(s)

TL
k (s, uk) :=

Nuk
∑

i=m
(k−1)
s

lk−1,iXk,i ,

where
m(k−1)

s
∑

i=1

lk−1,i = A(k−1)(s) ,

Nuk
∑

i=1

lk−1,i = A(k−1)(s) + TL
k−1 ⊗ SL

k (s, uk) . (10)

First we prove the initial step of the induction, i.e.,k = 1. For
statement (S1), we have

Pr(W1(t) > d) = Pr(A(t) > D(t+ d))

≤ Pr
(

A(t) > A⊗ SL
1 (t+ d)

)

≤
∑

0≤s≤t

Pr
(

A(t) > A(s) + SL
1 (s, t+ d)

)

=
∑

0≤s≤t

Pr
(

A(0)(t) > U0(s, u0) + SL
1 (s, t+ d)

)

.

In the first line we used the definition of packet delay. In the
second line we used the definition of dynamic server. And in
the third line we expanded the convolution and used Boole’s
inequality. In turn for statement (S2), we have

(

A(0)(s) + TL
0 ⊗ SL

1 (s, u1)
)X1

=

(

A(s) + inf
s≤x≤u1

{

TL
0 (s, x) + SL

1 (x, u1)
}

)X1

=
(

A(s) + SL
1 (s, u1)

)X1

= inf
s≤u1

(

A(s) + SL
1 (s, u1)

)X1

= inf
s≤u1

(

U0(s, u0) + SL
1 (u0, u1)

)X1

= inf
s≤u1

U1(s, u1) .

In the third line we used thatTL
0 (0) = 0, TL

0 (s) = ∞. In the
fourth line we rewrote the third line usinginf, becauses and
u1 are actually fixed. In the fifth line we used the definition
of U0. In the last line we used the recursive definition ofUk.

For the induction we next assume that (S1) and (S2) hold
for k ≥ 1. Then we prove them fork+1. Using the argument
from the initial step of the induction we can write the end-to-
end delay until thek + 1th node

Pr(Wk+1(t) > d)

≤ Pr

(

A(k)(t) ≥ inf
0≤s≤t+d

{

A(k)(s) + TL
k ⊗ SL

k+1(s, t+ d)
}

)

≤
∑

0≤s≤t

∑

s≤uk≤t+d

Pr
(

A(k)(t) ≥ A(k)(s) + TL
k (s, uk)

+SL
k+1(uk, t+ d)

)

=
∑

0≤s≤t

∑

s≤uk≤t+d

Pr

(

A(k)(t) ≥

m(k−1)
s
∑

i=1

lk−1,iXk,i +

Nuk
∑

i=m
(k−1)
s

lk−1,iXk,i + SL
k+1(uk, t+ d)

)

=
∑

0≤s≤t

∑

s≤uk≤t+d

Pr

(

A(k)(t) ≥

Nuk
∑

i=1

lk−1,iXk,i +

SL
k+1(uk, t+ d)

)

=
∑

0≤s≤t

∑

s≤uk≤t+d

Pr
(

A(k)(t) ≥
(

A(k−1)(s) +

TL
k−1 ⊗ SL

k (s, uk)
)Xk + SL

k+1(uk, t+ d)
)

=
∑

0≤s≤t

∑

s≤uk≤t+d

Pr
(

A(k)(t) ≥ inf
s≤u1≤···≤uk

Uk(s, uk)

+SL
k+1(uk, t+ d)

)

≤
∑

0≤s≤t

∑

s≤u1≤···≤uk≤t+d

Pr
(

A(k)(t) ≥ Uk(s, uk) +

SL
k+1(uk, t+ d)

)

.

In the third line we expanded the convolution and used Boole’s
inequality. In the fourth line we used Eq. (4), (5), and (10).
In the sixth line we used Eq. (10) again. Next we used the
inductive hypothesis for (S2) and Boole’s inequality in the
last two lines, which completes the induction for (S1).

To prove (S2) for k + 1 we have
(

A(k)(s) + TL
k ⊗ SL

k+1(s, uk+1)
)Xk+1

=

(

A(k)(s) + inf
s≤uk≤uk+1

{

TL
k (s, uk) + SL

k+1(uk, uk+1)
}

)Xk+1

= inf
s≤uk≤uk+1

(

A(k)(s) + TL
k (s, uk) + SL

k+1(uk, uk+1)
)Xk+1

= inf
s≤uk≤uk+1

(

m(k−1)
s
∑

i=1

lk−1,iXk,i +

Nuk
∑

i=m
(k−1)
s

lk−1,iXk,i

7

+SL
k+1(uk, uk+1)

)Xk+1

= inf
s≤uk≤uk+1





Nuk
∑

i=1

lk−1,iXk,i + SL
k+1(uk, uk+1)





Xk+1

= inf
s≤uk≤uk+1

(

(

A(k−1)(s) + TL
k−1 ⊗ SL

k (s, uk)
)Xk

+SL
k+1(uk, uk+1)

)Xk+1

= inf
s≤uk≤uk+1

(

inf
s≤u1≤···≤uk

Uk(s, uk) + SL
k+1(uk, uk+1)

)Xk+1

= inf
s≤u1≤···≤uk+1

Uk+1(s, uk+1) .

In the sixth line we used Eq. (10). In the seventh line we used
the induction hypothesis. In the last line we used the definition
of Uk.

Next, we use the statement (S1) to compute the end-to-end
delay bound onWn(t) for k = n. We have

Pr(Wn(t) > d)

≤
∑

0≤s≤t

∑

s≤u1≤···≤un−1≤t+d

Pr

(

A(n−1)(t) >

(

· · ·

(

(A(s) + SL
1 (s, u1))

X1 + SL
2 (u1, u2)

)X2
+ · · ·

+SL
n−1(un−2, un−1)

)Xn−1

+ SL
n (un−1, t+ d)

)

≤
∑

0≤s≤t

∑

s≤u1≤···≤un−1≤t+d

Pr

(

(

· · ·
(

(A(t− s)−

SL
1 (s, u1))

X1 − SL
2 (u1, u2)

)X2
− · · · −

SL
n−1(un−2, un−1)

)Xn−1

> SL
n (un−1, t+ d)

)

≤
∑

0≤s≤t

∑

s≤u1≤···≤un−1≤t+d

e−θnS
L
n (un−1,t+d) ·

E

[

e
θn

(

···
(

(A(t−s)−SL
1 (s,u1))

X1−SL
2 (u1,u2)

)

X2
−

···−SL
n−1(un−2,un−1)

)

Xn−1
]

≤
∑

0≤s≤t

∑

s≤u1≤···≤un−1≤t+d

e−θnS
L
n (un−1,t+d)

e−θn−1S
L
n−1(un−2,un−1) · · · e−θ1S

L
1 (s,u1)eθ1rA(θ1)(s,t) .

In the second line we expanded the recursion in the statement
(S1). In the third line we repeatedly applied the station-
arity bound from Lemma 2. In the fourth line we used
Chernoff’s Bound for someθn > 0. In the fifth line we
recursively applied Lemma 3. To do so, we letθiRi−1(θi) =
logMl(θi−1), which is already stated in Lemma 3,Ri−1(θi) =
1
θi
logMXi−1(logMl(θi)). Here, allSL

i ’s are packetized dy-

namic servers in the form of Eq. (2). Note that, if we let

b = sup
{

e−θnCn , e−θn−1Cn−1 , . . . , e−θ1C1
}

, (11)

we have

Pr(Wn(t) > d)

≤
∑

0≤s≤t

ed·log be
∑n

i=1 θilmaxe(log b+θ1rA(θ1))(t−s)

·
∑

s≤u1≤···≤un−1≤t+d

1

≤ bde
∑n

i=1 θilmaxKn .

Here we letK =
(1+ d

n)
1+ d

n

(d
n)

d
n

and usedlog b + θ1rA(θ1) < 0

as the stability condition. Takingt → ∞ proves the result.
We used the same argument as in [6] for the last step of
computation. Finally, the order of growth of theε-quantiles
for 0 < ε < 1 follows directly asO(n).

IV. N UMERICAL EVALUATION

To evaluate the analytical results, we use the following
numerical example settings. First, we let the packet sizes
be discrete uniformly distributedi.i.d. r.v.’s, l ∼ U [a, b].
Thus, we knowMl(θ) = eaθ−e(b+1)θ

(b−a+1)(1−eθ)
. Let a = 1, b =

16 for illustration. Clearly, lmax = 16. Next, we use the
Bernoulli process as the scaling process -X ∼ B(p), where
p represents the data through probability, so that we know
R(θ) = 1

θ
log(1 − p + pMl(θ)). Further we assume that all

servers are work-conserving with constant bit rateCi. Next,
we first compare the delay bounds from Section III-A with
those from Section III-B (→ Theorem 1) and also validate
them against simulation results. Then we evaluate our main
result from Theorem 1 changing the scaling parameters.

For the first comparison we assume that the arrivals are a
compound process instead of being packetized by a packetizer
before being served. Note, our results in Theorem 1 also imply
this case, since the MGF bound of the arrival process that
the theorem requires can be given directly. Without loss of
applicability in real-world, we assumeA(t) is a compound
Poisson process, so thatrA(θ) =

1
θ
λ(Ml(θ)−1). The average

rate of the Poisson processN(t) is normalized to one data
unit (bit) per one time unit, i.e.,λ = 1. The number of the
scaling elements varies from1 to 9, which means maximal
10 servers. We assume the utilization of the first server is
0.8, so C1 = 1.25. To chooseC2, . . . , C10, we refer to
Eq. (11). Avoiding that some server becomes the bottleneck,
we can let all the terms in Eq. (11) be equal, i.e.,θiCi =
θi−1Ci−1, 2 ≤ i ≤ n, whereθi’s are implied in Lemma 3.
This is actually a criterion to assign the service capacities
along the path a flow traverses. It must not be so strict, or in
other words, the service capacities in practice may alreadybe
set before we know the other network settings. So here, for
simplicity, we just statically set the capacities asC2 . . . C10 =
[1.15, 1.05, 0.95, 0.85, 0.80, 0.75, 0.70, 0.65, 0.60]. The quan-
tile ε is set to10−3. We use Omnet++ to do the simulations.
We measure106 packet delays at the destination node and use
the empirical quantile from these for the simulation results.

8

1 3 5 7 9
0

20

40

60

80

Number of Scalings

D
e
la

y

Theorem 1
Normalization
Simulation

Fig. 5. Delay bounds with Theorem 1, “normalized” flow, and simulation.

Figure 5 shows the bounds on the10−3-quantiles of the de-
lay. The plot shows theO(n) order of growth. We observe that
the results from Theorem 1 are much closer to the simulation
results than the results from analyzing the normalized flow.
The mathematical reason is that, although with both methods
we used the maximum packet sizelmax, in Theorem 1 we used
the form of [Ci · t − lmax]+, while for the normalization we
used the form ofCi/lmax · t. Obviously, the loss in precision
caused by the division is higher than for subtraction. The gap
to the simulation results implies that the tightness still can
be improved. Yet, as this work is the first attempt to model
the variable length packet flow transformation, we focused on
the expression of such a network scenario and provided the
first insights calculate delay bounds in this setting. The key to
improve on the tightness will be to make smarter usage of the
packet length distribution, than just resorting tolmax. On the
other hand, as you can also see in [12], [3], it can circumvent
several technical difficulties, otherwise we would have to
consider the inherent correlations among arrivals, services and
packet scaling elements, which is, however, as we discussed
in previous sections or in [13], [8], very difficult even in the
single node case without flow transformations. Furthermore,
the usage of Boole’s inequality could be improved by the
construction of a martingale as in [14]. Yet, again this is, so
far only possible for the single node case. So, we leave this
for future work.

For the second comparison we slightly change the arrival
description. Frequently we only know the statistical properties
of the bit flow and that the bits are packetized. The result
from Theorem 1 can also deal with this. So we use a bit flow
followed by a packetizer as the arrival for the server. Assume
that the original arrival flow of bits is a Poisson process
Poi(λ). Then we knowrA(θ)(s, t) ≤

λ(eθ−1)
θ

(t− s) + lmax.
The other numerical settings we are the same as before.

Figure 6 shows the bounds on the10−3-quantiles of the
delay under varying scaling parameters. We can see that
Theorem 1 increases with the through probabilityp. That
means if more of the flow is kept during the transformation,
the higher the burstiness at the next server node will become.
Interestingly, the gap between those curves from the theorem
is larger than that of the simulation results. The reason is that
we uselmax/C as the extra latency for each packet after being

1 3 5 7 9
0

100

200

300

400

500

Number of Scalings

D
e
la

y

Theorem 1 (p=0.3)
Simulation (p=0.3)
Theorem 1 (p=0.75)
Simulation (p=0.75)

Fig. 6. Delay bounds with Theorem 1 and the simulation.

served by the packetized server, while actually most packets
have a much smaller latency increase. This treatment enlarges
the sensitivity of the results, because the more the flow passes
through, the more tightness we lose.

V. CONCLUSION

In this paper, we extended network calculus to model
networks with variable length packet flow transformations.
The main contribution is the definition of a scaling element
that works on the packet level (rather than the bit level).
This facilitates a commutation of the service element with
the scaling element on the packet level, and thus preserves the
convolution-form expression of this kind of networks. Based
on this we derived the end-to-end delay bounds. We also
discussed another method, which is a direct extension of a
previous model by normalizing the bit flow and the bit-wise
service with the packet sizes, as if the flow was treated as
a flow with identical data units and the service rate was in
packets/s. We evaluated both methods and validated them
against simulations. We found that the method based on the
new packet scaling element is much closer to the simulation
results than the other one. However, we also point out that
improving the tightness is still a challenge for future work.
We hope to achieve this by finding a more precise expression
for the dynamic server of the packetized service.

REFERENCES

[1] S. Chakraborty, S. Kuenzli, L. Thiele, A. Herkersdorf, and P. Sagmeister.
Performance evaluation of network processor architectures: Combining
simulation with analytical estimation.Computer Networks, 42(5):641–
665, April 2003.

[2] C.-S. Chang. Stability, queue length and delay of deterministic and
stochastic queueing networks.IEEE Transactions on Automatic Control,
39(5):913–931, May 1994.

[3] C.-S. Chang. Performance Guarantees in Communication Networks.
Springer-Verlag, 2000.

[4] F. Ciucu, J. Schmitt, and H. Wang. On expressing networkswith flow
transformation in convolution-form. InProceedings of IEEE INFOCOM,
pages 1979–1987, April 2011.

[5] R. L. Cruz. A calculus for network delay, Part I and II.IEEE
Transactions on Information Theory, 37(1):114–141, January 1991.

[6] M. Fidler. An end-to-end probabilistic network calculus with moment
generating functions. InProceedings of IEEE IWQoS, pages 261–270,
June 2006.

[7] M. Fidler and J. Schmitt. On the way to a distributed systems calculus:
An end-to-end network calculus with data scaling. InProceedings of
ACM SIGMETRICS/Performance, pages 287–298, 2006.

9

[8] Y. Jiang. Stochastic service curve and delay bound analysis: A single
node case. InProceedings of the 25th International Teletraffic Congress
(ITC 25), September 2013.

[9] Y. Jiang and Y. Liu. Stochastic Network Calculus. Springer-Verlag,
2008.

[10] H. Kim and J. C. Hou. Network calculus based simulation:theorems,
implementation, and evaluation. InProceedings of IEEE INFOCOM,
March 2004.

[11] A. Koubaa, M. Alves, and E. Tovar. Modeling and worst-case dimen-
sioning of cluster-tree wireless sensor networks. InProceedings of the
27th IEEE International Real-Time Systems Symposium, pages 412–421,
December 2006.

[12] J.-Y. Le Boudec and P. Thiran. Network Calculus A Theory of
Deterministic Queuing Systems for the Internet. Number 2050 in Lecture
Notes in Computer Science. Springer-Verlag, 2001.

[13] J. Liebeherr, A. Burchard, and F. Ciucu. Delay bounds incommunication
networks with heavy-tailed and self-similar traffic.IEEE Transactions
on Information Theory, 58(2):1010–1024, February 2012.

[14] F. Poloczek and F. Ciucu. Scheduling analysis with martingales.
Performance Evaluation, 79:56–72, September 2014.

[15] J. Schmitt and U. Roedig. Sensor network calculus - a framework for
worst case analysis. InProceedings of Distributed Computing on Sensor
Systems, pages 141–154, June 2005.

[16] T. Skeie, S. Johannessen, and O. Holmeide. Timeliness of real-time
IP communication in switched industrial ethernet networks. IEEE
Transactions on Industrial Informatics, 2(1):25–39, February 2006.

[17] H. Wang, F. Ciucu, and J. Schmitt. A leftover service curve approach
to analyze demultiplexing in queueing networks. InProceedings of
VALUETOOLS, pages 168–177, October 2012.

