Delay Bounds Calculus for Variable Length Packet
Transmissions under Flow Transformations

Hao Wang and Jens Schmitt
DISCO | Distributed Computer Systems Lab
University of Kaiserslautern, Germany
Technical Report No. 390/14

Abstract—A fundamental contribution of network calculus is aggregated with other data. Previous work in deterministic
the con- volution-form representation of networks which erables network calculus has proposed the so-called data scaling
tight end-to-end delay bounds. Recently, this has been extded gjoment [7] to model such flow transformation. A subsequent

to the case where the data flow is subject to transformationsro ; . .
its way to the destination. Yet, the exténsion, based on saed WOTk then introduced the stochastic scaling element [4]ctwvh

scaling elements, only applies to a setting of identicalljized data represents the network in convolution-form and provides a
units, e.g., bits. In practice, of course, one often has to dewith flexible means of capturing actual transformations. The key
variable-length packets. Therefore, in this paper, we addess this jdea therein is to commute the scaling element with a dynamic
case and propose two novel methods to derive delay bounds for oryer glement recursively in order to obtain a single-node

variable-length packets subject to flow transformations. @e is f tati f th twork. H th del
a relatively direct extension of existing work and the otherone orm represeniation or theé network. However, these models

represents a more detailed treatment of packetization effgs. Ina have a limitation: they scale the flow only at the granularity
numerical evaluation, we show the clear superiority of thedtter of identical length data units (bits or packets). This istgui

one and also validate the bounds by simulation results. restrictive as many networks use variable-length packeds a
information and events like sending and receiving cannot be
observed at the bit-level. In this paper, we therefore psepo
a new scaling element which respects flows as a sequence
Network calculus has been established as a promisigg (variable-length) packets rather than just bits. Théiczi
approximative approach to queueing theory. Simply speakirthallenge in defining such a scaling element at the packet-le
by using inequalities instead of equalities, it can circemv s that it should preserve the convolution-form expressibn
some long-standing fundamental problems in queueing ¥heafylti-node networks. To ease the exposure we focus on an
especially in networks with non-Poisson arrivals and mléti apstract but widely applicable flow transformation openati
nodes. Network calculus was originally conceived by Cruz [$he demultiplexing of packets, i.e. to thin a flow of packets b
in the early 1990s and soon after by Chang [2]. Subsequent¥jecting only some of them, e.g. due to network operations
many researchers have contributed to it ([3], [12], [9])€Thsych as routing, load balancing, or simply loss of packets.
high modelling power of the network calculus has been \ye are, of course not the first to treat the case of variable-
transposed into several important applications for netwofength packets (though, to the best of our knowledge we are th
engineering problems: traditionally in the Internet's @ya first to take this into account under flow transformations). |
of Service pI’OposalS IntServ and DiffSeI’V, and more reyen%artiCL”ar, the packetizer element [12], [3] has been ohic®ed
in diverse environments such as for example wireless sengprnetwork calculus to deal with flows of variable-length
networks [11], [15], switched Ethernets [16], System-dmC packets. [13], [8] have extended it to the stochastic sgtin
(SoC) [1], or even to speed-up of simulations [10]. [13] models heavy-tailed arrivals with packet distributio
A key to good performance bounds is tbenvolution-form [g] reveals the inherent dependence brought by the packet
expression of multi-node networks. If we describe the serviprocess to the arrivals and services. We also use the paeketi
provided by a node as a lower bound proces$(s,t) for put now in combination with a scaling element in order to
time 0 < s < ¢, a tandem ofn nodes also provides a lowermodel flow transformations at the packet level. In previous
bound for the service process work of ours [17] we showed a novel model to understand
S ®S® - ® 8, the demultiplexing for first-in-first-out (FIFO) serversdip
’ compute tighter end-to-end delay bounds. Yet, foriiheode
where ‘2" denotes thgmin, +) convolution defined as; ® network to preserve the convolution-form the computatiébn o
Sy = info<s<{51(0,s) + S2(s,t)}. As a consequence, thethe performance measures turned out to be hard. Therefore,
end-to-end performance analysis can be obtained by agplyin this paper, we commute the packet-level scaling element
a single-node analysis. Yet, this convolution-form haswa-li and the dynamic server (as proposed for the bit level in
tation: the flows in the network are assumed to be transpor{dd), in order to provide a tractable end-to-end delay bound
unaltered. However, in many real-world applications a datmmputation.
flow is often transformed during its transfer; for instance, The rest of this paper is organized as follows. In Section I,
some parts are lost, routed to another destination, or ewga recall several fundamental definitions of network calsul

|. INTRODUCTION

and provide extensions of some of them under the assumpti@miable length packets into the network calculus framéwor
of variable length packets. In Section Ill, we present tw@/e denote the packet lengths as a sequence of positive intege
methods to compute the end-to-end delay bounds. The firabhdom variable$,, s, A packet procesd.(n),n > 1 is
is a relatively direct extension of [4], whereas the secoradcumulation of these.v.’s, L(n) = + 1l + -+ + 1,,, and
provides a more detailed treatment of the packetization bf = L(n) — L(n — 1) with L(0) = 0. A packet flow is
flows. In Section IV we compare two methods and companeodelled using the definition of packetizer ([3], [12]).
them against simulation results. We conclude in Section V. Definition 1 (Packetizer)Given a packet proceds(n) and

an arrival processi(t), an L-packetizer is a network element

[I. MODELLING THE DEMULTIPLEXING OF VARIABLE expressed by a functioRt”(-) satisfying for all A(t),¢ > 0
LENGTH PACKET FLOWS PL(A(t)) = L(N,) |

In this section we first recall the definitions of demultiplex here
ing, the scaling element, and the packetizer. Next, we define
the packet scaling element. Further, we discuss altemativ
system models when analyzing the end-to-end delay ofwée say that a flowA(t) is L-packetized ifA(t) = P* (A(t))
packet. Throughout the paper, the time model is discrete. for any ¢ > 0. So a packet flow is ar.-packetized arrival

In the framework of network calculus, a data flow fronprocess. Note, the functio®” is not restricted to a real
a source to a destination is modelled by an arrival processtwork element with a queue, it can also be used to parse
A(t), which counts the number of arriving data units (bitsa bit flow (e.g., with marks) into packets and not change its
in time interval (0,t]. The bivariate form is accordingly timing. In the rest of this paper, we will use both meanings.
A(s,t) := A(t) — A(s). We also denote:(t) = A(t — 1,1), Now we consider the demultiplexing of a packet flow. We
i.e., the arriving data units in time slot We model the extend the definition of the scaling element.
flow departing from a server as the procd3st) with the Definition 2 (Packet Scaling Elementit packet scaling
corresponding definition. These model the flow of bits. F@lement consists of af-packetized arrival procesd(t) =
many networks, the flow of bits is transformed on the Wazf.\fz‘1 l;, a packet scaling procesX taking non-negative
to their destination. For example, a flow can be expanded fpeger values and a scaled packetized flow defined for all
some extra data or some parts of the flow can be lost. One 0 as
interesting transformation is theemultiplexing whereby the x Nt
flow is split into multiple sub-flows. For example, if a part AR(t) = ZliXi :
of the original flow is routed to another destination at some =1
node, then the flow is demultiplexed into two sub-flows, oné/e can use the packet scaling element to model the transfor-
for each destination. We denote these as two arrival presesgiation of the packet flow, specifically, the demultipleximge.

Ny =max{m: L(m) < A(t)} . 1)

AM (t), A®) (t) satisfying i X5 meangi'l{“packeti goes to destination (1) ie., demUItipleXing
@ @ operates on each packet aid equals eithef or 1.
At) = AV (1) + AP () , A packet flow is usually processed or served by a queueing

gystem before or after being demultiplexed. To analyze the
delay of a packet through this system we distinguish two
models. One is, after being served by each node the output
is always packets, i.e., the bits are packetized by a paeketi
PL. The other is, there is no packetizer after service, yet we
observe from the bit flow the last bit of each packet according
to a packet procesk. In previous work [4] we derive the end-
to-end delay bound for the bit flow under flow transformation.

for all ¢ > 0. If we describe the splitting operation on th
bit-level as an indicator function {«nis bit goes to destination (1y»
which equals tol if term true, 0 otherwise, we have that
A (t) = ZZA:(? 1{“bit i goes to destination (1} Denoting this in-
dicator function for biti as X;, we define thescaling element
as a random process = (X;);>1 (a more general definition
can be found in [4]). We denote the scaled arrivalsidgt)
and

A(t) The second case can be a critical challenge for that approach
Ax(t) = ZXZ' ,Vt>0. (L-modulated scaling process and sampling dueLjo In
i1 this paper, we focus on the first case and assume that the

F_lcketization is not changed along the path.

In network calculus, we characterize the queueing system
gusing adynamic serve([3]). By convention, we denote it as
S(s,t) for 0 < s < t. Note that it is not the server itself but
only a property of the server. It defines a lower bound process
folg the service such that the followirapnvolutioninequality
polds for allt > 0.

Then we can use this scaling element to model the demf
tiplexing operation. Clearly, withi = (1,1,...) we get
A®)(t) = AYX(t). As we assume that the demultiplexin
operation happens instantaneously, the scaling elemsmda
queue.

However, in real-world the bits perhaps belong to differe
(variable length) packets, and transformations happerhen
whole packet instead of each bit. For the demultiplexing D(t)> A® S(t):= inf {A(s)+ S(s,t)} .
example, we may simply know the routing probability of a Ossst
complete packet to one destination. To model this (pack&then the inequality holds with equality, we say the dynamic
level) demultiplexing operation, we need to extend the scoperver isexact Note that the convolution of two concatenated
of the scaling element. Yet, before we do that, we first irdggr dynamic serversS; ® S» is still a dynamic server (concept

A- D A .,‘ PL(A) A AX AT N B view each packet as a single data unit ignoring its size. Then
M 3 Il L r : we re-express the service this packet receives. After deing
(@) (b) © @ we can derive the end-to-end packet delay bound directhgusi
the calculation from [4].
Fig. 1. Network elements: (a) dynamic server, (b) packeti¢e) packet Consider the arrivals consist of packets whose arrivalgime
scaling element, (d) packetized server.
are defined as the arrival time of the last bit, we can model
PL(A) these time jumps with a counting process and together with
— ||| e E@—‘@—»ﬂ@- a packet size distribution, model the arrival process as a
compound process A(t) = Ziﬁ(f) l;, where{N(t),t > 0}
Fig. 2. A network model consisting of packetized arrivabsvices and packet iS the counting process, i.e., the number of arriving packet
scaling elements. in time ¢, and [; is the i-th packet size. This seems to be
a slightly different description of a packetized flow, besau
here we do not assume a packetizer element in the network.
Yet, the packetized process resulting from packetizer $s al
covered by this definition. Consequently, we obtain an afriv
process of packets {N(¢),t > 0}. We call this approach
“normalization” of the bit flow by the packet sizes.

Such a sequence of packets will be served by a service
St (s,t) = [S(5,t) = lmaz)+ - (2) element described by the bitwise service capacity together
))) with a packetizer. How much service capacity does a packet
The proof follows using a busy time analysis. receive? To answer this question is not very hard. For exampl

We illustrate the network elements in Figure 1. NOW Wggqme that a packet with lengthvill be served by a server
define the packet delay. , with constant service capacity bits/s, so the service rate for

Definition 3 (Papket Delay)a processV(t) is called packet g packet isC/l packets/s. This is the “normalization” on
delay (process), if for alt > 0 the service side. The constant capacity server is transfrm

W(t) = inf{d > 0: PL(A(t)) < PE(D(t+d))} . intto a variable capacity server. We write it 88°"™(s,t) =
Y. c(i) for all 0 < s < t. Here all thec(z)’s are the time
varying capacities of serving a packet at time

Here we assume the service is FIFO. The packet delay is an [4], we derive the end-to-end delay bounds for a flow with

virtual delay that would be experienced by a packet whighentically sized data units. The derivation is based on ewm

arrives at timer. generating function (MGF, denoted By x () for r.v. X and
any > 0, Mx(0) = E[e?X]) bounds of the arrivals and the

I1l. END-TO-END DELAY OF A NETWORK WITH FLOW services and expresses a network with flow transformations i

DEMULTIPLEXING a convolution-form. Therein, the servers are assumed te hav

In this section, we compute the end-to-end packet delay mnstant MGF_ bounds. However, to use the same derivation is
networks with multiple demultiplexers. According to prews duite challenging, because now on one hand, the servers have
work, there are two ways to compute the end-to-end dela‘ﬂﬁ!”able capacities and to know thglr MGF bounds is hard;
(1) commute service and scaling elements [4], (2) get ti98 the other hand, they are “normalized” by the same packet
leftover service for the flow of interest if the server useBr0Cess and hence dependent of each other. _

FIFO scheduling [17]. In this paper, we use the first, i.e., 10 0btain the MGF of the dynamic server we can firstly ex-
we repeatedly move all the packet scaling elements in frdSS the inter-service time. Then we use the (inverse)lcapl

of the packetized servers and obtain the convolution-fofm Bansform of the convolution of inter-arrival times and keic

the network. Then we calculate the end-to-end delay boung&€ distributions to compute thed.f. of the inter-service
Here, we have two choices: one is to “normalize” the packBfn€- Thirdly, we use renewal theory to obtain fhe. f. of the
flow as well as the bitwise service with packet size, so th§punting process of the service. At last, the MGF followstby i
the observation is directly on each packet irrespectivetof definition. About the dependency, Holder inequality migkt
size (+ Section Ill-A); the other is to use Definition 3 and@ solution, but many paramete_rs are mtro_duced. We may also
derive the delay bound directly through observing the aei construct or prove some negative correlations after we hese t
bit flow with packetizers ¢ Section 11I-B). For the packet Chernoff bound in Theorem 1 of [4]. All of these approaches
flow we assume that the packet length's areiid. with 1Y their focus on the accuracy of the expressiveness, yet,
Imas < 0. In fact, this assumption can be justified in man§hey lose th_e analytical tractability. In this section, westj
real-world applications with heterogeneous, large-scatel want to provide a method to calculate the end-to-end delay fo

high degree of multiplexing environment. variable-length packet flows that follows closely the apuio
in [4] and then compare it against the more sophisticated

. method using the packet scaling element. Assume that the bit
A. Observing the Packet Flow wise capacityS(t) is offered work-conserving with variant
Consider Figure 2, we lift our observation of the flowates and letS(t) > Ct for anyt > 0 such that MGF bound
directly from the bit level to the packet level. This means wé/g;)(—0) < e~9Ct for # > 0, then we can vaguely write

of convolution-form network). We define packetized server
as a bit server followed by a packetiz8”, and denote the
dynamic server of it as’ (s, t). Given the dynamic server of
the bit serverS and the packet proceds and assuming that
a maximum packet sizk, .. exists, we obtain a possible”,

x M Ny
PL(A) ||| B EX PL(A@(PL(A)) ”l F _ inf {ZliXi+ Z Z,-Xi}
i=1

0<s<t ey

(a) (b) N, N,

Fig. 3. Commutation of packetized service and packet sgalin Jnf) 1:.Xi, whereA(s) + SH(st) =D 1
- T = 1=1
N \X

c(i) > C/l,, wherel, means either some packet lengthoor = inf l;
We assume the packet size has a limit, ig< l,,,4.. Clearly, OSs<t —
¢(i) > C/lymaz. We obtain a lower bound of this normalized X
dynamic serves”" (s, t) > S (t—s). Now, we represent (()infq {A(s) + SL(s,t)}>

the dynamic server as a server with the normalized capacity <
- C/lmaz- And this solves the above problems at the same < ET) .
time. Consider the same network scenario as in Theorem 1. Y&nhe fourth line we can use a proof by contradiction. m

assume the compound process as the arrivals instead of uiRgough this lemma, we see that there are less departures for
packetizer. We also assumis()(—60) < ¢ "“',j > 1 the transformed system than in the original system, which
at each bit server. The end-to-end delay has the followiggsyres that the delays are higher. The expressioff‘of
stochastic bound looks complicated, but the meaning is cledf\’,, . I;
Pr(W > d) < K"b? . are t.he packets served. from timeto ¢. And because after
passing through a scaling elemeXt only a scaled part of
We point out, the only difference between this result anflese packets is sent to the next server, the service they
Theorem 1 in [4] is that the MGF bound of each service isreceived should also be a scaled part of the total service.
Mgnorm o p(—0) < 6_9%@_5) 3) After recursiv_ely using this lemma we get an expression for
Sy (sit) - ' the network in terms of a scaled arrival process served by
We also point out, when we do the “normalization” to th@ dynamic server in convolution-form. The arrivals have the
service, whether there exists a real packetizer componentfam
not does not change the packet delay analysis, because only .
after the last bit of a packet is served by the bit-wise server s (AX) T (1),
the service of this packet is considered to be finished, this i

just as if there was a packetizer virtually. if there are k packet scaling elements. We denote it as
A®)(t). The alert reader may note that, for the bit flow, the
B. Observing the Original Bit Flow with Packetizers concatenation of scaling elements can be naturally forradla

In the previous subsection, we provided an approach g (Axl)X2 (t) = ZZ_Z:}}(? K15 X, whereas for the packet
calculate end-to-end delay bounds for variable-lengtitkgta flow, this is not true any more. We point out that they are just
flows under flow demultiplexing which observes a flow on thgifferent in appearance but the same in essence - after each
packet-level rather than the bit level. Now we directly abise round of scaling we choose a part of the packets (bits) fram th
the flow on the bit level as in Figure 2. From [4] we knownput flow. Therefore, we provide the delicate expression of
when deriving the end-to-end delay bound we should avojg®)(¢), which will be used in the rest of this section. Assume
summing up the delay bounds node-by-node, but rather uger-packetized flowA(t) = Iy + Iy + - - - + Ly, whereN; is
the “pay burst only once” principle. To do so, we expresgiven in Eq. (1). We first denote the packets respectively the

the network in convolution-form through moving the scalinglumber of packets in the arrivals until timefter each round
elements between two servers to the front. The challenge ngivscaling ad;, ; respectivelymgk). Clearly fork > 0
is that the scaling element is not at the bit level anymore. '

Xk

We provide the following lemma to commute the service and mio) = N,

scaling element at packet-level, which is instrumentalhte t m

derivation of end-to-end delay bounds. m = Z 11x1.50} »

Lemma 1:(COMMUTATION OF PACKET SCALING ELE- =1

MENT AND DYNAMIC SERVER). Consider system (a) and (b) .

with packetized arrivalsd(t) = PZ(A(t)) in Figure 3. We " m* Y

defineT’”(s,t) := Y21, | 1;X; as the exact dynamic server m) =Y Lyx, s0p - 4

in (b), whereA(s) = Y™ 1;, A(s) + S (s, 1) = S0, 1. If i=1

A, S, X, and L are independent, then for all> 0, Further we denoted®)(¢) as

F(t) < BX(1). A¥ () = LXii+ o+ InXiw,

= hat--+l, o

1,m;
= haXe1+-+1
= [271 + o1

Proof: Becausel'" is an exact dynamic server, we have (Axl)xz () WX o
1,mt 2,m!t

_ : X L AL MMy

F(t) = inf {A%(s)+T"(s,1)} pn(®

.- an MMOO process. It hag-envelopeR,,—1 () given in [3],
ARG = lpg e

- [4], e.g., for ani.i.d. scaling process,
;1M

(k—1) 1

my R,-1(0) = 7 log Mx, _, (log M;(0)) .
= Z lo—1,i Xk, - (5)
i=1 Thus we obtain
Next, we provide two useful lemmas for deriving the end- 0(§ s)X,H

to-end delay bounds. Vir(6n) = E |e \mt & <E [eeRnfl(e)(P—Q)} .

Lemma 2 (Stationarity Boundissume that the packelss
of a packet process arei.i.d. , the X;’s of a packet scaling
elementX are alsoi.i.d., A and B are two L-packetized
arrival processes, then for all ¢,z > 0,

Pr(AX(t) — BX(s) > 2) < Pr ((A(t) ~B(s)X > :c) .

(6)
To get a bound on the right term above, we first note that,
becausd;’s arei.i.d. ,

_ log M; (0r—1)(P—Q
Myp 4 (001) = B o200 ()
Proof: On the one hand we have We can derive a bound on this by usifhg,, and noting that
- SL | is independent of othe$’s andX;’s. So we can easily
r (A%(t) - B*(s) > x) obtain the following MGF bound
N,
— L Unp —2,Up —
= (Zl i X; — leXz > l‘,A(t) > B(S)) MES+1l7r (Gn,l) <e On—1S; 1 (un—2,un I)Vn72(9n71) . (8)
=1
Combining Eg. (7) and (8) we have
< ZLXL Z
= Pbr (1—%;+l x) E [elog I\/Il(enfl)(PfQ):| < 670”*135*1(u’“z’u"‘*l)Vn,Q(Gn,l))
On the other hand we know Using this bound in Eq. (6) and letting
X
Pr ((A(t) —B(s))” = :v) 0, Rp—1(0) = log My (6,,_1)
N
— pr zt: LXi n >z . completes the proof. This equation implies evéryl <i < n
N1 C if given 6,, = 6. |
X;'s andl;’s areilid. , which completes the proof. - We now derive the end-to-end delay bound and show that it

grows inO(n) wheren is the number of nodes.

Theorem 1:(END-TO-END DELAY BOUNDS IN A PACKET
FLow TRANSFORMATION NETWORK). Consider the network
scenario from Figure 2 where dirpacketized arrival process
A(t) = PL(A(t)) traverses a series of stationary and (mu-

Lemma 3:(RECURSIVE MGF BOUND OF SCALED PRO-
CESY. Assume thatd is an L-packetized processS! is
the packetized server;’'s are i.i.d. with maximal length
lmaz < 00, @andX;’s are Markov-Modulated On-Off (MMOO)

I‘(;ssl E)Hro)czzses and independent/bfand S, if we denote tually) independent bi_t level service elements followedany
" L-packetizer and scaling elements denotedby S, ..., Sk
B ee(...(A(tfs)fsf(s,ul))xl7...755,l(u,L,z,u,,L,l))x”‘*l andi.i.d. loss processeX, X, ..., X,,_1, respectively. As-

’ sume the packet lengths df - /;’s arei.i.d. . Assume the

thenforall0 < s <wu; <---<wu,_1 <t andn > 1, MGF boundsM s) (6) < €4 and Mg, () (—0) <
; e 90kt for k = 1,2,...,n, and somefd > 0. We also

Vi1 (6n) < e rrSnaltn—zun—)y o(9, 1) assume that the maximum packet length,, < co. Under

a stability condition, to be explicitly given in the proo®rf
0; > 0,7 = 1,2,...,n, we have the following end-to-end
steady state delay bounds for dl> 0

wheref; > 0, 1 <1i < n is given in the proof.
Proof: Let 4, = 6, which can be a given value. To
simplify the notation, let us assume

Xn— S 0401) lman 7rnpd
(. (At —s) - Sf(s,ul))X1 o 55_2(%_3,%_2)) 2 Pr(W >d) < el Jimaz frnp, , 9)
where the constant®” and b are also given in the proof.
— Zli 7 Moreover, thes-quantiles scale a®(n), for ¢ > 0.
Proof: First we use Lemma 1 to transform the system
whereP is ar.v. and view. To do so, we iteratively commute the packetized server
and the packet scaling elemehttimes. See Figure 4. Since
Q .
Zli the outp.ut. of the transformed system is smaller than or equal
’ to the original system, the delay bound of the transformesl on
. , .) must be larger than or equal to the delay bound of the original
whereQ is ar.v.. Becausé;’s arei.i.d. andX,,_, 'fflMMOO one, hence, we compute the delay bound of this transformed
loss process, we can see tlﬁgil l; — Z?:l li) ~ isalso system.

57671 (“n—Q; un—l) -

i=1

L“@,ﬁ 4@7@@, = 51<n£1 Ui(s,u1) -

In the third line we used thaf(0) = 0,7 (s) = cc. In the
fourth line we rewrote the third line usinigf, becauses and
uy are actually fixed. In the fifth line we used the definition

Next, fix¢,d > 0. Fork, s > 0 we definelly(s, ug) = A(s), ©Of Uo- In the last line we used the recursive definitionlqf.

Fig. 4. Apply Lemma 1 fork times.

for ug = s, and then recursively For the induction we next assume th&;) and (52) hold
X for k > 1. Then we prove them fak -+ 1. Using the argument
U (s,ug) = (Uk_l(s,uk_l) + SE(up_1, uk)) * from the initial step of the induction we can write the end-to

_end delay until the: + 1** node
for K > 1 andug_1 < ug. We prove the theorem at the first

steps by induction. Fok > 1 we assume the following two Pr(Wiy1(t) > d)
statements;) and (S:) for the induction: Pr (A“f) () > Q<i»r<lf,;+d {A(k)(s) +TE® S,f+1(s,t+ d)})
(S) PrWi(t)>d) < > > -

IN

0<s<t s<uy<-<up_1<t+d < Z Z PT(A(k) (t) > AW (s) + T (s, u)
<s<t s<up<t+d
Pr(A® D) > U, 1)+ SEup_1,t+d preslass
r((t) > Up—1(s,up—1) + Si' (up—1,t +)) ; +SE, (ug, t + d))
and for fixeds anduy, m(=1)
X

(8) (A% V() + TE @ SEsw)) -3 3 pr (AW Z i1, X +

_ . 0<s<t s<up<t+d

= sgullgféuk Uk(s,ug) , N,

L

where T} is defined recursively agl(0) = 0, TF(s) = oo Z lo-1,iXp,i + S (un, T+ d)>
for all s > 0, and for N, the number of packets ir(s) i=m

N

T (s, ux) = Zu:k le—1,i Xk - Z Z PT<A(k) >Zlk 1,i Xk +

0<s<t s<up<t+d
(A 1)

mk=1) Slf—i—l(ukat + d))
where Z lho1i = AFD(s)
i=1 -y ¥ (A A=Y () 4
k ; A(k 1 TL SL 10 0<s<t s<up<t+d
14 = Ts)+ T ® S,uk) .
Zk L () k=1 k(k) () Tk 1®Sk S'lLk)XA+S]€+1 Uk,t+d))
First we prove the initial step of the induction, i.é.= 1. For = Z Z r(A > inf U(s,up)
statement&;), we have 0<ast s<up<ttd s<u1< <ug
PrWi(t) > d) = Pr(A(t) > D(t + d)) +SEp (u,t+ d))
< Pr(A ()>A S1 (t+d)) < Z Z Pr(A® () > Ui(s, ux) +
< Z Pr(A(s) + SE(s,t +d)) 0<s<t s<us << <t+d
0<s<t SE L (uk, t+d))
= (AON(t) > Uy (s, u) + Sf (st + d)) In the third line we expanded the convolution and used Bsole’
0<s<t inequality. In the fourth line we used Eq. (4), (5), and (10).

In the first line we used the definition of packet delay. In thé the sixth line we used Eq. (10) again. Next we used the
second line we used the definition of dynamic server. And iRductive hypothesis for&,) and Boole’s inequality in the
the third line we expanded the convolution and used Boold&st two lines, which completes the induction fa# J.

inequality. In turn for statementsg), we have To prove (5;) for k + 1 we have
X1 (k) I L X+
(A(O)(s) +T¢ @ SE (s, ul)) (A (s) + T © Sia (s, Ulc+1))
X (k) L L K
= <A(s) + é<1lnfu1 {T (s, x) + ST (a, ul)}> = (A (s) + sgu:}%f;ik+1 {3 (s, ur) + Siryq (us, Uk+1)})

Xp41

inf (A(k) (s) + T,f(s, ug) + S,fﬂ(uk, uk+1))

s<up <up41

(A(s) + Sl (s,ul))x

inf (A(S)JrSlL(s,ul))X m(=1)
=t = inf lh—1,i Xk, Uh—1,i Xk,

— inf (UO(S,U0)+SL(Uo,U1))X1 ot < Z k—1 kit Z k—1 k,

s<up <up41 1)

s<uy i=mg

Xk41
+Sl£+1(ukvuk+1>>

X
Nuk k+1

= i) , L
- Sguir%f’.“kJrl ; Zk_l’le"L + Sk+1 (uk7 uk+1)
X
=l ((A(kil)(s) + T, @ Sk (s, Uk)))
s<up<ug4i1

X41
+Sl£+1(ukvuk+1>>

= inf inf
sSupSupyr \sSur<--Sug
= inf

Uk 1S, Uk+1) -
s<ur < <upqa + (R)

Xp41
Un(s,uw) + Sv (ur, ukm)

namic servers in the form of Eq. (2). Note that, if we let

e N T K)

_ n o On—1Cn—
b = sup {e , e ton—1

we have

Pr(W,(t) > d)
Z @108 370 Oilman o (logb+01m4(01))(t—s5)

0<s<t
> 1

sSur <+ Sup o1 <ttd

IN

< bdezz;l Oilmax K™ .

A
Here we letK = % and usedogb + 6174(61) <0

a\n

as the stability condition. Taking — oo proves the result.

In the sixth line we used Eg. (10). In the seventh line we usd¥e used the same argument as in [6] for the last step of
the induction hypothesis. In the last line we used the dedmit COmputation. Finally, the order of growth of thequantiles

of Uy.

Next, we use the statemers;() to compute the end-to-end

delay bound oriv,,(t) for k = n. We have

Pr(Wa(t) > d)

-y ¥ pr<A<n1>(t)> (-
0<s<t s<us <--<tup_ 1 <t+d
((A(s) + SE(s,)X + SE(ur, ug)) ™ 4 -
Xn-1
+S£71(un—27 Uﬂn—l)) + Sﬁ (un—h t+ d))
< > 3 Pr((---((A(t—s)—
0<s<t s<uy <--<up_1<t+d
X
SE(s,u1))*t = S5 (ur,u9)) " — - =
Xn—l
S,,IL‘_I(U7L—27 ’Uzn—l)) > S,,Ii (Un_l,t + d))
S Z Z e_ensr,[;(un—ht'i‘d) .
0<s<t s<uy <---<up_1<t+d
0rn <“'((A(t8)SlL(s,u1))x1 7SQL(u1,u2))x2,
Ele
Xn—1
‘“_S#l(un—%un—l)) ‘|
<) > o—0n S (un—1,t+d)

0<s<t s<u1 < <up—1<t+d
e—9n—15£,1(un—27un—1) . ,6—9151L(197’111)6917‘14(91)(5775) .

for 0 < e < 1 follows directly asO(n). [|

IV. NUMERICAL EVALUATION

To evaluate the analytical results, we use the following
numerical example settings. First, we let the packet sizes
be discrete uniformly distributedi.d. r.v.’s, I ~ Ula,bl.
Thus, we knowM;(0) = % Leta = 1,0 =
16 for illustration. Clearly,l,,... = 16. Next, we use the
Bernoulli process as the scaling procesX ~ B(p), where
p represents the data through probability, so that we know
R(0) = 3 log(1 — p + pM;(0)). Further we assume that all
servers are work-conserving with constant bit rate Next,
we first compare the delay bounds from Section IlI-A with
those from Section IlI-B {+ Theorem 1) and also validate
them against simulation results. Then we evaluate our main
result from Theorem 1 changing the scaling parameters.

For the first comparison we assume that the arrivals are a
compound process instead of being packetized by a packetize
before being served. Note, our results in Theorem 1 alsoyimpl
this case, since the MGF bound of the arrival process that
the theorem requires can be given directly. Without loss of
applicability in real-world, we assuméd(t) is a compound
Poisson process, so that(d) = $A(M;(6) —1). The average
rate of the Poisson proces¢(t¢) is normalized to one data
unit (bit) per one time unit, i.e.\ = 1. The number of the
scaling elements varies from to 9, which means maximal
10 servers. We assume the utilization of the first server is
0.8, so C; = 1.25. To choose(s,...,Ciy, we refer to
Eq. (11). Avoiding that some server becomes the bottleneck,
we can let all the terms in Eq. (11) be equal, i&C; =
0;—1C;_1,2 < i < n, where#;’s are implied in Lemma 3.
This is actually a criterion to assign the service capaitie
along the path a flow traverses. It must not be so strict, or in

In the second line we expanded the recursion in the statemetiter words, the service capacities in practice may alréedy

(S1). In the third line we repeatedly applied the stationset before we know the other network settings. So here, for
arity bound from Lemma 2. In the fourth line we usedimplicity, we just statically set the capacities@s. .. C1g =
Chernoff's Bound for somé&),, > 0. In the fifth line we [1.15,1.05,0.95,0.85,0.80,0.75,0.70,0.65,0.60]. The quan-
recursively applied Lemma 3. To do so, we teR;_1(0;) = tile ¢ is set to10~3. We use Omnet++ to do the simulations.
log M;(0;—1), which is already stated in LemmaRB;_;(6;) = We measura0°® packet delays at the destination node and use
9% log Mx, , (log M;(6;)). Here, all St’s are packetized dy- the empirical quantile from these for the simulation result

80r,

500

== Theorem 1 ~=+= Theorem 1 (p=0.3)
= = =Normalization . —— Simulation (p=0.3) o
—— Simulation e 400} "= = Theorem 1 (p=0.75) »
60 Pt . —— Simulation (p=0.75) IR
- 300
o 401 . <
A e A

- 200

100f_ ..

Number of Scalings Number of Scalings

Fig. 5. Delay bounds with Theorem 1, “normalized” flow, anchslation. Fig. 6. Delay bounds with Theorem 1 and the simulation.

served by the packetized server, while actually most packet
have a much smaller latency increase. This treatment exdarg

e sensitivity of the results, because the more the flowgsass
rough, the more tightness we lose.

Figure 5 shows the bounds on thé3-quantiles of the de-
lay. The plot shows thé(n) order of growth. We observe that
the results from Theorem 1 are much closer to the simulati
results than the results from analyzing the normalized flol!
The mathematical reason is that, although with both methods
we used the maximum packet sizg,,, in Theorem 1 we used V. CONCLUSION
the form of [C; - t — l,naz]+, While for the normalization we In this paper, we extended network calculus to model
used the form of’; /1,4, - t. Obviously, the loss in precision networks with variable length packet flow transformations.
caused by the division is higher than for subtraction. The gdhe main contribution is the definition of a scaling element
to the simulation results implies that the tightness stih ¢ that works on the packet level (rather than the bit level).
be improved. Yet, as this work is the first attempt to moddihis facilitates a commutation of the service element with
the variable length packet flow transformation, we focused ¢he scaling element on the packet level, and thus preserees t
the expression of such a network scenario and provided grnvolution-form expression of this kind of networks. Base
first insights calculate delay bounds in this setting. Thetke on this we derived the end-to-end delay bounds. We also
improve on the tightness will be to make smarter usage of tHiscussed another method, which is a direct extension of a
packet length distribution, than just resortingltg,.. On the previous model by normalizing the bit flow and the bit-wise
other hand, as you can also see in [12], [3], it can circumvesgrvice with the packet sizes, as if the flow was treated as
several technical difficulties, otherwise we would have t& flow with identical data units and the service rate was in
consider the inherent correlations among arrivals, sesvimd packets/s. We evaluated both methods and validated them
packet scaling elements, which is, however, as we discusggfinst simulations. We found that the method based on the
in previous sections or in [13], [8], very difficult even ineth new packet scaling element is much closer to the simulation
single node case without flow transformations. Furthermor@sults than the other one. However, we also point out that
the usage of Boole’s inequality could be improved by thigproving the tightness is still a challenge for future work
construction of a martingale as in [14]. Yet, again this s, sVe hope to achieve this by finding a more precise expression
far only possible for the single node case. So, we leave tli@ the dynamic server of the packetized service.
for future work.

For the second comparison we slightly change the arrival REFERENCES
description. Frequently we only know the statistical pmipe [1] S. Chakraborty, S. Kuenzli, L. Thiele, A. HerkersdonfdaP. Sagmeister.
of the bit flow and that the bits are packetized. The result Performance evaluation of network processor architestu®mbining
from Theorem 1 can also deal with this. So we use a bit flow S|mulat|0_n with analytical estimationComputer Networks42(5):641—

665, April 2003.
followed by a packetizer as the arrival for the server. Assum[2]

C.-S. Chang. Stability, queue length and delay of deieistic and
that the original arrival flow of bits is a Poisson process stochastic queueing networkK&EE Transactions on Automatic Control
Ae?—1)

‘ 39(5):913-931, May 1994.
Poi()). Then we knowra(0)(s,t) < ==—(t — 5) + lmaz- [3] C.-S. Chang. Performance Guarantees in Communication Networks
The other numerical settings we are the same as before. Springer-Verlag, 2000.

. _3 . [4] F. Ciucu, J. Schmitt, and H. Wang. On expressing netwavkh flow

Figure 6 shows the bounds on the 'quant”es of the transformation in convolution-form. IRroceedings of IEEE INFOCOM
delay under varying scaling parameters. We can see that pages 1979-1987, April 2011.
Theorem 1 increases with the through probability That [5] R. L. Cruz. A calculus_ for network delay, Part | and ILIEEE

. . . . Transactions on Information Theqr@7(1):114-141, January 1991.

means if more of th_e flow is kept during the tranSfPrmat'on 6] M. Fidler. An end-to-end probabilistic network calcalwith moment
the higher the burstiness at the next server node will become
Interestingly, the gap between those curves from the tineore
is larger than that of the simulation results. The reasohas t

generating functions. liProceedings of IEEE IWQo$ages 261-270,
June 2006.
we usel,,,.../C as the extra latency for each packet after being

[7] M. Fidler and J. Schmitt. On the way to a distributed sysecalculus:
An end-to-end network calculus with data scaling. Rroceedings of
ACM SIGMETRICS/Performancpages 287-298, 2006.

[8] Y. Jiang. Stochastic service curve and delay bound amlyA single
node case. lfProceedings of the 25th International Teletraffic Congress
(ITC 25), September 2013.

[9] Y. Jiang and Y. Liu. Stochastic Network CalculusSpringer-Verlag,
2008.

[10] H. Kim and J. C. Hou. Network calculus based simulatitreorems,
implementation, and evaluation. Rroceedings of IEEE INFOCOM
March 2004.

[11] A. Koubaa, M. Alves, and E. Tovar. Modeling and worssealimen-
sioning of cluster-tree wireless sensor networksPtoceedings of the
27th |IEEE International Real-Time Systems Sympagspages 412—-421,
December 2006.

[12] J.-Y. Le Boudec and P. Thiran. Network Calculus A Theory of
Deterministic Queuing Systems for the Interiéimber 2050 in Lecture
Notes in Computer Science. Springer-Verlag, 2001.

[13] J. Liebeherr, A. Burchard, and F. Ciucu. Delay boundsammunication
networks with heavy-tailed and self-similar traffitEEE Transactions
on Information Theory58(2):1010-1024, February 2012.

[14] F. Poloczek and F. Ciucu. Scheduling analysis with mgales.
Performance Evaluatign79:56—72, September 2014.

[15] J. Schmitt and U. Roedig. Sensor network calculus - enénaork for
worst case analysis. IRroceedings of Distributed Computing on Sensor
Systemspages 141-154, June 2005.

[16] T. Skeie, S. Johannessen, and O. Holmeide. Timelinésgead-time
IP. communication in switched industrial ethernet network$EEE
Transactions on Industrial Informatic®(1):25-39, February 2006.

[17] H. Wang, F. Ciucu, and J. Schmitt. A leftover serviceveuapproach
to analyze demultiplexing in queueing networks. Pmoceedings of
VALUETOOLSpages 168-177, October 2012.

