
y
be
.
D

l to
the

l
es,

e
st
ing
s a
d

al

xy
on

he
rved
es
a
a

Scalable TCP-friendly Video Distribution for
Heterogeneous Clients

Michael Zink1, Carsten Griwodz2, Jens Schmitt1, and Ralf Steinmetz1
1 Multimedia Communications, Darmstadt University of Technology, Germany

2Department of Informatics, University of Oslo, Norway
Email: {Michael.Zink,Jens.Schmitt,Ralf.Steinmetz}@KOM.tu-darmstadt.de, griff@ifi.uio.no
Abstract - This paper describes the integration of a TCP-
friendly mechanism into RTP. We discuss why the integration is
favorable over a solution in which RTP and TCP-friendly
mechanisms are separated from each other. During the design
of the TFRC integration we took into account that caches
should be integrated to create a TCP-friendly and scalable
video distribution system. With the notion that caches are often
placed very close to clients and that these clients will be in many
cases connected to the caches via dedicated links (ADSL, cable
modem) we present a solution where the connection between
server and cache is TCP-friendly and the one between the cache
and the client is not necessarily congestion-controlled. We fur-
ther show how with the aid of an RTSP extension both peers of
the link can negotiate the kind of transmission (congestion con-
trolled or not), thus allowing the usage of standard and com-
mercial clients and performing congestion control on the
crucial part between server and client. In addition to the design
of such an integration we have also implemented the TCP-
friendly mechanism in our own streaming environment and
present experimental resukts based on this implementation.

Keywords: VoD, Caching, Layered Video, TCP-friendliness

1. Introduction
In the last few years, the Internet has experienced an

increasing amount of traffic stemming from the use of
multimedia applications which use audio and video
streaming [1]. This increase will continue and even be
reinforced since access technologies like ADSL and cable
modems enable residential users to receive high bandwidth
multimedia streams.

The challenges of providing VoD in the Internet are
manifold and require the orchestration of different
technologies. Some of these technologies like video
encoding are fairly well understood and established. Other
technologies like the distribution and caching of video
content and the adaptation of streaming mechanisms to the
current network situation and user preferences are still under
investigation.

Existing work on VoD has shown caches to be extremely
important with respect toscalability, from network as well as
from video servers’ perspective [2]. Scalability, of course, is
a premier issue if a VoD system is considered to be used in
the global Internet. Yet, simply reusing concepts from
normal Internet Web caching is not sufficient to suit the
special needs of video content since, e.g., popularity life
cycles can be very different [3].

Besides scalability, it is very important for anInternetVoD
system to take into account the “social” rules implied b
TCP’s cooperative resource management model, i.e., to
adaptive in the face of an (incipient) network congestion
Therefore, the streaming mechanisms of an Internet Vo
system need to incorporate end-to-end congestion contro
prevent unfairness against TCP-based traffic and increase
overall utilization of the network. Adaptive streaming wil
also support a variety of clients (workstations, set-top box
handhelds) which characterize today’s Internet.

2. Scalable Adaptive Streaming
In this section, we briefly describe the system in which th

TCP-friendly mechanism should be integrated. We fir
present the architecture for Scalable Adaptive Stream
(SAS) and then present our implementation that serves a
basis for experimental work on this topic. A more detaile
overview of the SAS architecture is given in [4].

2.1 Architecture
As caching method we employ so-called condition

write-through caching1. With conditional write-through
caching a requested stream is forwarded “through” the pro
cache to the clients and the proxy cache stores the stream
its local cache if a positive decision is made by the cac
replacement strategy. Subsequent clients can then be se
from the proxy cache (see Figure 1). This technique reduc
the overall network load in a VoD system compared to
method where the video is transported to the cache in

1 Adopted terminology from memory hierarchies.

First client

Proxy
Cache

Origin Server

Second client

Figure 1. Video distribution.

LC-RTP

e

re
to

y
ols

ted
n-
of
for
the
pt

ck

by

t
]
e
ur
rol
e

th
rely

n

on
nd
er,
to
s

ior.
he
e
uld
er
se

tely.
me
ng
in
ck
ol

/

separate stream using a reliable transmission protocol (e.g.,
TCP) [5]. On the other hand, conditional write-through
caching requires a reliable transport protocol to recover
from transmission losses. In [6], we present the design and
implementation of such a protocol, calledLoss Collection
RTP (LC-RTP), which fits particularly well in a VoD
architecture.

Enabling congestion control for streaming applications
requires quality adaptation in contrast to elastic applications
that allow a reduced transmission speed. However, this
quality adaptation does not solely serve congestion control
purposes but also satisfies the needs of the large variety of
heterogeneous clients that exist in the Internet. Layered
video represents a suitable method to allow for this quality
adaptation. This offers also the ability to cache a stream in
an appropriate quality, i.e., in a scenario where only
handheld devices might be using a cache it is not necessary
to cache the video in its best quality thus using less storage
space and increasing the cache’s efficiency.

2.2 KOMSSYS
KOMSSYS2 is our own implementation of a streaming

system that consists of server, proxy cache, and client. It is
based on the standard protocols RTP/RTCP, RTSP, and SDP.
With our ongoing work on wide-area distribution systems
for AV content we decided to build our own AV streaming
and distribution platform to perform further investigations.
This decision is based on the experiences we made, trying to
integrate our new mechanisms in already existing streaming
platforms. When we started our implementation, there was
only one implementation of RTSP available in open source3.
We found out that this implementation preceded the RFC
[27] and was not easily updated and reused. After some
unsatisfactory experiences in adapting existing RTP/RTCP
implementations for our goals, we decided to integrate our
own implementation [ZGJ+00] into the system. We checked
whether JMF [Car99] fulfils our needs but MPEG-1
decoders e.g. were only available for Solaris and Windows.
RTP was integrated in some open source projects like vic,
but a closer look at this implementations showed us that
RTP is highly intergrated and was therefore not usable. In
the MASH project a scalable multimedia architecture for
distributed multimedia collaboration in heterogeneous
environments [MBK+97] was developed. Streaming in
MASH is realized by the MBone videoconferencing tools
and therefore bears the same problems a described for vic.

We are also aware of a stand-alone RTP library [Lie00],
but this project started after we decided to implement our
own RTP. The “Darwin” project [Dar00] was published by
Apple after the start of our work as well. It is concerned

exclusively with the server side and supports only th
QuickTime file format [Tow99]

Further examples that exploit our implementation a
given in [ZGS01].In this paper we present an extension
our streaming platform by a TCP-friendly mechanism.

2.3 TCP-friendliness
It is not our purpose to develop new TCP-friendl

mechanisms for streaming. In recent years, several protoc
for the transport of non-TCP traffic with TCP-friendly
congestion control were developed. They can be separa
in mainly two classes: window-based [7, 8] and equatio
based [9, 10]. Widmer et al. have published an overview
some of these approaches [22]. To be applicable
streaming over the Internet these protocols have to meet
following requirements: a) rate oscillations should be ke
to a minimum and b) modification to the network
infrastructure should be prevented (e.g., the protocol sta
in the routers can stay as it is).

From our observations and the classification presented
Widmer et al. [22], TCP-friendly Rate Control (TFRC) is
very promising as a TCP-friendly protocol for unicas
streaming [2]. Recent work by Widmer and Handley [11
introduces a single-rate multicast version of TFRC but w
were not able to integrate this multicast extension into o
work, so far. TFRC is a rate-based congestion cont
protocol with good TCP-friendliness. The main advantag
in combination with A/V streaming is that the rate is smoo
in the steady-state case and therefore applications that
on a fairly constant sending rate are supported.

2.4 TFRC in RTP
In this section, we motivate why we favor an integratio

of TFRC into RTP4 to allow congestion controlled
streaming. It was one of our goals to keep the deviati
from standard RTP and RTCP as small as possible a
therefore use conformant extensions if possible. Howev
that has not always been realizable which is mainly due
the fact that the proposed TCP-friendly mechanism
requires some significant changes to the protocol behav
Our decision to integrate TFRC into RTP is based on t
following considerations: Some functionality like the tim
stamping and the sequence numbering of the packets wo
be performed twice in a non-integrated scenario of RTP ov
TFRC. The amount of feedback message would increa
since TFRC ACKs and RTCP message are sent separa
In addition, with separated RTP and TFRC headers so
information in the headers would be redundant. Integrati
RTP and TFRC would (i) reduce redundant functionality
the sender and receiver, (ii) reduce the amount of feedba
messages, and (iii) minimize the overhead in the protoc

2 http://www.kom.e-technik.tu-darmstadt.de/komssys/
3 http://www.realnetworks.com/devzone/library/rtsp/index.html

4 For reasons of simplicity we call this integration of TFRC in RTP RTP
TFRC in the remainder of this paper.

ts
m
ol
of

o

M
of

isk
is
in

In
f a
P/

ose

d
of

he
tail
s
to

D
nt

re.
ve

port
if

ew
g
a

the
he
is
he
he
by
C
e

the
C
he
he

-

headers. The main disadvantage of this proposed integration
of TFRC in RTP is that is can only be used by applications
that already use RTP. But most of the applications TFRC is
well suited for do already use RTP, like most of today’s
audio- and video-streaming applications. Another
disadvantage is the context-change that is necessary to pass
all TFRC messages into user space rather than being
handled in the kernel. A new protocol (like DCP [KFH+01])
could evaluate this feedback in the kernel. In our application
domain, this is probably not a fatal problem because video
server performance is currently not CPU-bound

3. Related Work
The related work for scalable streaming in the Internet

that involves proxy caches can be split in three categories:
commercial products, theoretical resp. simulative
investigations, and prototype implementations in the
academic world.

[12, 13, 14] represent the first category. Unfortunately,
there is only little or no technical information about these
products available. One exception is Kasenna who reveal
that their caching product [15] makes use of the prefix
caching mechanism [16].

For the second category, we only mention very closely
related work since a large amount of research has been
performed in this area. In [16], the authors propose an
interesting scheme of caching only the beginning (prefix) of
video streams. While this allows to decrease the setup
latency for clients and to accommodate variable bit rate
transmission channels it does not address the scalability and
adaptiveness issues. An architecture of video servers, caches
and clients for layer encoded video is proposed in the work
of Paknikar et al [17]. In contrast to our SAS proposal a
single broker exists that handles all client requests and
redirects them to the corresponding cache. Even though the
usage of a broker allows to reduce the complexity of the
caches it has the disadvantage that in the case of a broker
failure the clients are not able to request content. The
MiddleMan [18] approach differs from the others in a way
that a cooperative caching mechanism is introduced where a
single video stream can be stored across multiple caches.
The single caches are connected via a LAN. Based on
simulations the performance of this approach depending on
different replacement policies is examined. [19] were
among the first that proposed a proxy caching mechanism
for adaptive streaming and evaluated this mechanisms via
simulation.

In subsequent work, which is the first example for the
third category, Rejaie et al. also implemented that
mechanism in a prototype [20] and performed experiments
to present some of its features. In this work their focus is
mainly on the design and the implementation of a proxy
cache and the goal to adaptively adjust the quality of a
cached stream based on popularity and available bandwidth.

The main difference to our approach is the fact that clien
in their architecture always have to be able to perfor
congestion control. In addition, the congestion contr
mechanism in [20] is not integrated in RTP but set on top
it. Another implementation of a TCP-friendly partially
reliable video streaming approach is presented in [21]. N
proxy caches are envisioned in this architecture.

In [22], Race et al. present the implementation of a RA
based video cache which is designed for the caching
MPEG-2 streams. The usage of RAM instead of a hard d
circumvents a bottleneck on the disk’s channel. DSM-CC
used for stream control and the streaming is performed
traditional, non-congestion-controlled manner via UDP.
[23], Gruber et al. present the design an implementation o
prefix cache [16] based on the standard protocols RT
RTCP and RTSP and necessary extensions of th
protocols.

4. Implementation
In the following, we present the design an

implementation of our SAS architecture that is capable
supporting heterogeneous clients.

4.1 Data Path

4.1.1 Stream Handler Extensions
The media-processing part of KOMSSYS is based on t

stream handler architecture that is presented in more de
in [GZ01-1]. In this section, we will define the extension
that must be made in the stream handler architecture
support the RTP/TFRC technique. In our experimental Vo
platform we developed server, proxy cache and a clie
which make use of the stream handler architectu
Therefore, a great deal of stream handler modules ha
already been designed, implemented and tested. To sup
RTP/TFRC in our platform we reuse these elements and
necessary extend them. Figure 4 gives an overall overvi
of the SHs that are involved in an RTP/TFRC streamin
session. The TFRC functionality is not implemented as
new SH but as an extension of the PacketizerSH at
sender and the DepacketizerSH at the receiver. At t
packetizers the aplication level framing and deframing
performed. The PacketizerSH is also responsible for t
timing, i.e., it determines when the packet is sent onto t
network. This extension of the packetizers was caused
the fact that the functionality of the packetizers and TFR
are very similar. At the sender e.g. in both cases the tim
when a new packet will be generated and sent out on
network is determined here. The only difference with TFR
is that this timing information is based on the feedback t
TFRC sender received from the client rather than t
encoding format that would determine the timing in an RTP
only case.

de
-

ion
ted

in

sm
t
ng

m
P
ee
ld
r.
a.
by
to
s

ion
al

n
nt
ry
st
4.1.2 Packetizer and depacketizer
Several profiles for the transport of standardized audio

and video formats in RTP exist [Sch96]. So far no profile for
the transport of layer encoded video is available. Our
experience with the development of (de-)packetizers for
several audio and video formats [ZGS01] have shown that
building new SH for this purpose is a rather simple task.
Depending on what layer encoded video techniques should
be supported it might be necessary to build more than one
SH. One of our future tasks is to investigate layer encoded
video proposals with respect to the needs of our system. If
this work is done we will be able to decide which of the
proposals should be supported and develop the appropriate
packetizer and depacketizer SHs. At the moment we do
onlys send dummy-content in our system.

Whenever an RTP packet should be sent out on the
network the Packetizer SH will pull data from the
FileSourceSH and push it to the RTPSink SH. With the
TFRC extension the Packetizer SH determines the time
when the next send event should occur, based on the
feedback from the TFRC receiver, to achieve an appropriate
transmission rate. For the layer encoded video the rate
information, that TFRC provides, will also determine the
number of layers that should be transmitted. The TFRC
extension at the Depacketizer SH retrieves the TFRC
specific information from the RTP extension header an
generates a feedback message based on this information.

4.1.3 TFRC Functionality
To enable TFRC functionality in RTP some new header

information is needed (see Figure 3) and part of the overall
protocol behavior must be changed. Two of the additionally
required header fields are already contained in the RTP
header,sequence numberand time stamp,respectively. We
propose that the additional fields shown in Figure 3 should
be put in the RTP extension header. This allows clients that
have no extended (TFRC) functionality to also receive RTP
packets that include TFRC information, since they simply
ignore the extension header. [24] states that the extension
header must be ignored by other interpreting
implementations that have not been extended. As already

mentioned in Section 2.2, we have, in preceding work, ma
an extension to RTP in order to make it reliable, called LC
RTP. This mechanism makes also use of RTP’s extens
header. To be able to use both, LC-RTP and integra
TFRC, we propose an extension header as shown
Figure 2.

We also made an extension to the LC-RTP mechani
that allows two different kinds of retransmission for los
segments. This extensions will be presented in the followi
section.

In our implementation, which is based on a strea
handler architecture, the integration of TFRC in RT
actually saves an additional timer and a buffer (s
Figure 4). If TFRC and RTP would be separated, data wou
be retrieved from the file system by the RTP internal time
This timer is defined by the profile of the streamed dat
Since in combination with TFRC, packets are not sent
the RTP profile determined time, a buffer is needed
temporarily store the data before TFRC’s own timer fire
and the data is sent out on the network. The rate informat
provided by TFRC also determines the number of actu
layers that are transmitted.

4.1.4 LC-RTP Extensions
In preceding work [ZGJ+00], we proposed an extensio

to RTP that provides lossless transmission of AV conte
into proxy caches and concurrently, lossy real-time delive
to end-users. It achieves reliability by retransmitting lo

Figure 2. : RTP Header Extension

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| defined by profile | length |
+-+
| round trip time |
+-+
| bitrate |
+-+
| loss meassurement round |
+-+
| mode |
+-+
| byte count |
+-+
| byte count |
+-+

bitrate
round trip time

RTP/Sender RTCP/Receiver

time stamp*
seq num*

mode
round

b_exp
b_rep

time stamp
seq num

*already included

Figure 3. : Additional TFRC header fields

File RTP Push
Source

SH
Packetizer

SH
Pull
SH

RTP
Sink
SH

File RTP RTP
Source

SH
Packetizer

SH
Sink
SH

TFRC
SH

Integrated

Non-integrated

Timer

Timer TimerBuffer

Figure 4. SH graph for the integrated and non-integrated case

Data Flow

TFRC

n
e
ta

ion
ll
a
P/

w

e

te

as

he
h

at
d at
ly
P-

he
TP
nts
e

9

7;
segments of a stream after the original streaming phase.
This RTP extension is called loss collection RTP (LC-RTP).
Due to a byte count in the LC-RTP packet header, the cache
recognizes packet losses. It maintains a loss-list and after
the initial transmission the missing segments are requested
from the server. Thus, an exact copy of the video can be
created on the proxy cache. The traffic increase is minimal
because the transmission of the AV content and any caching
will take place while the end-user is served.

We made an extension of LC-RTP that allows two
different kinds of retransmission of missing segments.
Depending on different factors like popularity of the video
and kind of client it might be necessary to retransmit only
the losses that occurred during the transmission or in
addition transmit the segments of the layered video that
were not transmitted at all (e.g .in the case of congestion).
For the second case no modifications must be made to LC-
RTP, since all missing segments will be (re)transmitted as
with the original LC-RTP. In the first case two modifications
to LC-RTP must be made:
• The sender stores a list of the segments that are really

sent onto the network.

• With the aid of this list the server can identify which
segments have to be retransmitted and which not. The
client sends requests for retransmissions as long as all
segments from its list of missing segments are transmit-
ted or a maximum number of retries is reached. When
the server notices that the client request contains only
not sent segments it will send the client a BYE message
to stop it from sending further requests. Since the client
is already in the loss collection phase it will interpret this
message differently from a BYE that is sent at the end of
the initial transmission.

We decided to modify LC-RTP in this way because only
minor changes are needed to enhance its functionality and
no new messages must be introduced.

4.2 Control Path
The feedback of a TFRC receiver can be transported in an

application definedRTCP packets which are intended for
experimental use [24]. Using this kind of RTCP packet, as
depicted in Figure 5, takes also advantage of the fact that
several standard RTCP messages (e.g., receiver report) can
be transmitted together with the TFRC feedback in one
packet, since RTCP allows the concatenation of several
RTCP packets to one compound packet. Although the usage
of “stacked” RTCP packets reduces the amount of payload
rather insignificantly, the I/O load at sender and receiver can
be reduced considerably since the overall amount of
feedback packets that must be transmitted, received and
processed decreases. Thus, the additional load that is
introduced by the congestion control mechanism is kept
minimal. The timing for the receiver reports must be
changed in a way that is based on the RTT information

instead of the algorithm proposed in [24]. Since we envisio
only unicast transmission so far in our architecture th
higher amount of reports should neither restrict the raw da
transmission nor cause an ACK implosion.

4.3 Signaling
In our streaming environment RTSP is used as applicat

signalling protocol. In this section, we show how a sma
extension of RTSP can be used to allow members of
streaming session to negotiate if they are capable of RT
TFRC. To achieve this capability we introduce a ne
transport-protocolidentifier in theTransportheader, called
RTPTFRC. This would, e.g., allow an RTP/TFRC capabl
client to send the followingSETUPmessage and therefore
initiate a TCP-friendly session.

Afterwards, the server replies with the appropria
transport-protocolidentifier depending if it is RTP/TFRC
capable or not. For the first case the answer would look
follows:

In the following section, we motivate why the capability
to negotiate congestion control capability is necessary.

4.4 Putting the pieces together: Proxy Cache
Figure 8 depicts the streaming graph at the cache. T

shown graph allows us to perform conditional write-throug
caching (Figure 2.1) due to the Packet-Multiplier-SH th
creates a copy of each received segment which is store
the local disk. Besides, this graph also allows TCP-friend
transmission between server and cache and non-TC
friendly transmission between cache and client since t
path between server and client is separated into two R
sessions. Thus, allowing the usage of commercial clie
and also providing a TCP-friendly transmission in th

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|V=2|P| subtype | PT=APP=204 | length |
+-+
| SSRC/CSRC |
+-+
| name (ASCII) = TFRC |
+-+
| seq num |
+-+
| timestamp |
+-+
| b_rep |
+-+
| b_exp |
+-+

Figure 5. : Application-defined RTCP packet

SETUP rtsp://video.example.com/twister/video RTSP/1.0
CSeq: 1
Transport: RTPTFRC/AVP/UDP;unicast;client_port=3058-305

RTSP/1.0 200 OK
CSeq: 1
Session: 12345678
Transport:RTPTFRC/AVP/UDP;unicast;client_port=3056-305
 server_port=5000-5001

in
d).

che
be

er.

ion
r
the
a
e
l in
P.
fits
C

o
ity

.
c

d

in

ng
in

s

nd
backbone. Although their might also be bandwidth
variations on the link between client and cache, this
transmission need not always be TCP-friendly.

Based on the RTSP SETUP message (Section 4.3) the
cache can determine if a client can perform congestion
control or not. If congestion control is possible no feedback
messages are sent from the cache but rather from the client
and passed through the cache to the server. In the opposite
case, feedback messages are created at the cache and
forwarded to the server. In order to avoid a client overload
(the client does not give any TFRC feedback in this case)
the client can initially signal the kind of link it is connected
to via theBandwidthheader field in RTSP [27], as it is, e.g.,
done by the RealPlayer. The information contained in the
Bandwidthfield is forwarded from the cache to the server
and is used there to set the MAX_BITRATE value for
TFRC which defines an upper threshold for the sender’s
rate. During the session RTCP feedback messages from the
client are used at the cache to detect a possible client
overload.

With the ability not only to send data along the defined
path between the stream handlers but also to exchange
signalling information in a bidirectional manner between
the stream handlers, information obtained from the RTCP
receiver reports can be forwarded to the TFRC receiver in
order to influence the value of the expected bitrate (b_exp).

The expected bitrate is transmitted via TFRC ACKs to the
TFRC sender and is used there for the calculation of the new
transmission bandwidth. In future investigations we have to
find a reasonable heuristic that transforms the loss
information of the RTCP receiver report into a reasonable
value for the expected bitrate at the TFRC receiver. To
sustain the TCP-friendliness of TFRC the heuristic should
not be able to increase the expected bitrate.

5. Experiments

• Linux based implementation

I guess we can show that the RealPlayer would work
this scenario. (Shows that commercial clients can be use
We should show a TFRC trace between server and ca
and a trace between cache and client. The both should
identical!!

6.
We present experiments and their results in the full pap

7. Conclusions
In this paper, we presented the design and implementat

of a scalable, TCP-friendly video distribution system fo
heterogeneous clients. The presented system allows
usage of clients with and without congestion control while
congestion controlled transmission will always b
performed between server and cache. Congestion contro
our system is achieved by the integration of TFRC in RT
Next to the integration itself we also presented the bene
of such an integration in comparison to an RTP over TFR
approach.

In future work we plan to make use of real layered vide
instead of dummy-content which depends on the availabil
of an adequate codec.

8. References
[1] S. McCreary and K. Claffy. Trends in Wide Area IP Traffic Patterns

In Proceedings of 13th ITC Specialist Seminar on Internet Traffi
Measurement and Modelling, September 2000. http://
www.caida.org/outreach/papers/AIX0005.

[2] C. Griwodz. Wide-area True Video-on-Demand by a Decentralize
Cache-based Distribution Infrastructure. PhD thesis, Darmstadt Uni-
versity of Technology, Darmstadt, Germany, April 2000.

[3] C. Griwodz, M. Bär, and L. C. Wolf. Long-term Movie Popularity in
Video-on-Demand Systems. InProceedings of ACM Multimedia’97,
pages 340–357, November 1997.

[4] M. Zink, J. Schmitt, and R. Steinmetz. Retransmission Scheduling
Layered Video Caches. Into appear at ICC 2002, New York, NY,
USA, April 2002.

[5] R. Frederick, J. Geagan, M. Kellner, and A. Periyannan. Cachi
Support in RTSP/RTP Servers. Internet Draft, March 2000. Work
Progress.

[6] M. Zink, C. Griwodz, A. Jonas, and R. Steinmetz. LC-RTP (Los
Collection RTP): Reliability for Video Caching in the Internet. In
Proceedings of the Seventh International Conference on Parallel a

LCRTPCachingReflectorGM

Server

Figure 8. : Streamhandler Datapath

Client

Local Disk

File Packet

RTP

Source
SH

Multiplier
SH

Decoder
SH

File
Sink
SH

RTP
Sink
SH

TFRC

Server Cache

Client1

Client2

TFRC

Standard

Figure 9. : Testbed

Distributed Systems: Workshops, pages 281–286, July 2000.
[7] S. Jin, L. Guo, I. Matta, and A. Bestavros. TCP-friendly SIMD Con-

gestion Control and Its Convergence Behavior. InProceedings of
ICNP’2001: The 9th IEEE International Conference on Network
Protocols, Riverside, CA, 2001.

[8] I. Rhee, V. Ozdemir, and Y. Yi. TEAR: TCP emulation at receivers -
flow control for multimedia streaming. Technical report, North Caro-
lina State University, April 2000.

[9] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-Based
Congestion Control for Unicast Applications. InProceedings of the
ACM SIGCOMM ’00 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication 2000,
Stockholm, Sweden, pages 43–56, August 2000.

[10] R. Rejaie, M. Handley, and D. Estrin. RAP: An End-to-End Rate-
based Congestion Control Mechanism for Realtime Streams in the
Internet. InProceedings of the Eighteenth Annual Joint Conference
of the IEEE Computer and Communications Societies 1999, New
York, NY, USA, pages 395–399, March 1999.

[11] J. Widmer and M. Handley. Extending Equation-Based Congestion
Control to Multicast Applications . InProceedings of the ACM SIG-
COMM ’01 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication 2001, San Diego,
CA, pages 275–285, August 2001.

[12] I. Infolibbria. Media Servers and Media Proxies - the Critical Differ-
ences, 2001. http://www.infolibria.com/products/collateral/
Application_Briefs/ds_ab_strea% m_media_v7e.pdf.

[13] I. Inktomi. Inktomi Traffic Server - Media Cache Option, 1999. http:/
/www.inktomi.com/products/cns/resources/technical.html.

[14] I. Realsystems. Realsystem Proxy8 Overview, 2000. http://ser-
vice.real.com/help/library/.

[15] I. Kasenna. Technical White Paper: Video Content Distribution,
2000. http://www.kasenna.com.

[16] S. Sen, J. Rexford, and D. Towsley. Proxy Prefix Caxching for Multi-
media Streams. InProceedings of the Eighteenth Annual Joint Con-
ference of the IEEE Computer and Communications Societies 1999,
New York, NY, USA, pages 1310–1319, March 1999.

[17] S. Paknikar, M. Kankanhalli, K. Ramakrishnan, S. Srinivasan, and
L. H. Ngoh. A Caching and Streaming Framework for Multimedia.
In Proceedings of the ACM Multimedia Conference 2000, Los Ange-
les, CA, USA, pages 13–20, October 2000.

[18] S. Acharya and B. Smith. MiddleMan: A Video Caching Proxy
Server. InProceedings of NOSSDAV 2000, Chapel Hill, North Caro-
lina, USA, June 2000.

[19] R. Rejaie, H. Yu, M. Handley, and D. Estrin. Multimedia Proxy
Caching for Quality Adaptive Streaming Applications in the Internet.
In Proceedings of the Nineteenth Annual Joint Conference of the
IEEE Computer and Communications Societies 2000, Tel-Aviv,
Israel, pages 980–989, March 2000.

[20] R. Rejaie and J. Kangasharju. Mocha: A Quality Adaptive Multime-
dia Proxy Cache for Internet Streaming. InProceedings of NOSSDAV
2001, Port Jefferson, New York, USA, June 2001.

[21] N. Feamster, D. Bansal, and H. Balakrishnan. On the Interactions
Between Layered Quality Adaptation and Congestion Control for
Streaming Video. In11th International Packet Video Workshop
(PV2001), Kyongju, Korea, April 2001.

[22] N. J. P. Race, D. G. Waddington, and D. Shepherd. An Experimental
Dynamic RAM Video Cache. InProceedings of NOSSDAV 2000,
Chapel Hill, North Carolina, USA, June 2000.

[23] S. Gruber, J. Rexford, and A. Basso. Protocol Considerations for a
Prefix-Caching Proxy for Multimedia Streams. InProceedings of the
Ninth International World Wide Web Conference 2000, Amsterdam,
The Netherlands, May 2000.

[24] H. Schulzrinne, S. L. Casner, R. Frederick, and V. Jacobson. RFC
1889 - RTP: A Transport Protocol for Real-Time Applications. Stan-
dards Track RFC, January 1996.

[25] M. Zink, J. Schmitt, and R. Steinmetz. Scalable TCP-friendly Video
Distribution for Heterogeneous Clients. Technical Report TR-KOM-
2002-01, Darmstadt University of Technology, January 2002.

[26] C. Griwodz and M. Zink. Dynamic Data Path Reconfiguration. In
International Workshop on Multimedia Middleware 2001, Ottawa,
Canada, pages 72–75, October 2001.

[27] H. Schulzrinne, A. Rao, and R. Lanphier. RFC 2326 - Real Time
Streaming Protocol (RTSP). Standards Track RFC, April 1998.

	Abstract - This paper describes the integration of a TCP- friendly mechanism into RTP. We discuss...
	Keywords: VoD, Caching, Layered Video, TCP-friendliness
	1. Introduction
	2. Scalable Adaptive Streaming
	2.1 Architecture
	Figure 1. Video distribution.

	2.2 KOMSSYS
	2.3 TCP-friendliness
	2.4 TFRC in RTP

	3. Related Work
	4. Implementation
	4.1 Data Path
	4.1.1 Stream Handler Extensions
	4.1.2 Packetizer and depacketizer
	4.1.3 TFRC Functionality
	Figure 2. : RTP Header Extension
	Figure 3. : Additional TFRC header fields
	Figure 4. SH graph for the integrated and non-integrated case

	4.1.4 LC-RTP Extensions

	4.2 Control Path
	Figure 5. : Application-defined RTCP packet
	Figure 6.
	Figure 7.

	4.3 Signaling
	4.4 Putting the pieces together: Proxy Cache
	Figure 8. : Streamhandler Datapath

	5. Experiments
	Figure 9. : Testbed

	6.
	7. Conclusions
	8. References
	Scalable TCP-friendly Video Distribution for Heterogeneous Clients
	Michael Zink1, Carsten Griwodz2, Jens Schmitt1, and Ralf Steinmetz1
	1 Multimedia Communications, Darmstadt University of Technology, Germany
	2Department of Informatics, University of Oslo, Norway
	Email: {Michael.Zink,Jens.Schmitt,Ralf.Steinmetz}@KOM.tu-darmstadt.de, griff@ifi.uio.no

