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al Report No. 338/05Abstra
tWireless LANs operating within unli
ensed frequen
y bands requirerandom a

ess s
hemes su
h as CSMA/CA, so that wireless networksfrom di�erent administrative domains (for example wireless 
ommunitynetworks) may 
o-exist without 
entral 
oordination, even when they hap-pen to operate on the same radio 
hannel. Yet, it is evident that this la
kof 
oordination leads to an inevitable loss in e�
ien
y due to 
ontentionon the MAC layer. The interesting question is, whi
h e�
ien
y may begained by adding 
oordination to existing, unrelated wireless networks,for example by self-organization. In this paper, we present a methodol-ogy based on a mathemati
al programming formulation to determine theparameters (assignment of stations to a

ess points, signal strengths and
hannel assignment of both a

ess points and stations) for a s
enario of
o-existing CSMA/CA-based wireless networks, su
h that the 
ontentionbetween these networks is minimized. We demonstrate how it is possibleto solve this dis
rete, non-linear optimization problem exa
tly for smallproblems. For larger s
enarios, we present a geneti
 algorithm spe
i�-
ally tuned for �nding near-optimal solutions, and 
ompare its results totheoreti
al lower bounds. Overall, we provide a ben
hmark on the min-imum 
ontention problem for 
oordination me
hanisms in CSMA/CA-based wireless networks.1 Introdu
tion1.1 Ba
kground and MotivationOperators of mobile tele
ommuni
ation networks invest large amounts of moneyfor ex
lusive li
enses of 
ertain radio frequen
y bands and the infrastru
ture re-quired for providing their servi
es. Consequently, they are interested in usingtheir radio resour
es most e�
iently and therefore put mu
h e�ort into the net-work planning pro
ess (i.e. employing highly sophisti
ated models, optimizationtools, in-situ measurements, et
.).Wireless LANs in 
ontrast, are rarely planned with su
h diligen
e. Thisis partly due to the fa
t that they are in prin
iple easy to deploy, espe
iallywhen they start out small and grow in an evolutionary pro
ess. While their1



CSMA/CA random a

ess s
heme allows them to 
o-exist to a 
ertain extentwith other nearby wireless LANs, 
arrier sensing also results in the problem of
ontention between 
o-
hannel senders.Considering that wireless LANs only have a very limited number of non-overlapping 
hannels to 
hoose from (up to 4 in 802.11b/g, up to 12 in 802.11a,depending on regulations), it is not easy to avoid 
ontention simply by 
hoosinga di�erent 
hannel. The problem might get even worse, if the spatial densityof wireless LANs in
reases, if more vendors adopt proprietary 
hannel bondingte
hniques [19℄ to in
rease the throughput of their produ
ts, or if more produ
tsthat are not 802.11-friendly use the li
ense exempt ISM and U-NII frequen
ybands. Furthermore, although radio 
hannels in 802.11a are non-overlapping,re
eivers of many 
heaper wireless LAN adapters 
annot 
leanly �lter out single
hannels. As a result they experien
e interferen
e from adja
ent 
hannels aswell.Thus if lo
ations and 
on�gurations of a

ess points (APs) in a wirelessLAN are not properly planned, 
ontention is usually unavoidable. The 
hallengetherefore is to introdu
e me
hansims for 
oordinating a

ess points and stations(STAs) so that 
ontention 
an at least be 
ontrolled.We are espe
ially interested in the investigation of s
enarios where planningAP lo
ations is simply not possible. One parti
ular s
enario, in whi
h our basi
motivation lies, is that of wireless 
ommunity networks (WCNs), in whi
h APsare owned and operated by the users themselves, who would like to donate sparewireless a

ess 
apa
ity to the 
ommunity. In this s
enario, it is desirable thatwireless LAN �
ells� from di�erent owners have a large 
overage area, thus itwould not be a good solution simply to redu
e transmission power as mu
h aspossible. Yet on the other hand, there is usually no 
oordination between theAPs of the WCN, leading to 
o-
hannel interferen
e and 
ontention.We 
annot yet o�er a solution for 
ontrolling inter-domain 
ontention. How-ever, in this paper we propose methods for determining the optimal assignmentof STAs to APs as well as the transmission power and 
hannel settings forboth APs and STAs that result in minimal 
ontention for a given wireless LANs
enario. These methods 
an be used to analyse the potential for redu
ing 
on-tention by introdu
ing 
oordination between wireless LANs and 
an also serveas a ben
hmark for su
h 
oordination me
hanisms.1.2 Related WorkAs already mentioned in the previous se
tion, mu
h resear
h has been done forthe planning of mobile tele
ommuni
ation networks. One aspe
t of planning inthis 
ontext is the sele
tion of installation sites from a set of available 
andidatesites (e.g. [12, 5℄). This 
an be 
ombined with the 
on�guration of base stations,e.g. 
hoosing antenna types and orientation, and transmission power [7℄. Often,the pla
ement problem has multiple, 
ompeting obje
tives, su
h as maximizing
overage, maximizing 
apa
ity, and minimizing installation 
ost. Channel as-signment is another important planning aspe
t whi
h has been studied both for�xed and dynami
 assignments (e.g. [10, 11, 14℄). Di�erent heuristi
s su
h assimulated annealing [7℄, geneti
 algorithms [5℄, and tabu sear
h [12℄ have beenused for both of these aspe
ts.Partially, the work on 
ellular networks 
an be applied in the 
ontext ofwireless LANs as well and vi
e versa. For example, [8℄ formulated a 
overage2



planning problem for outdoor wireless LANs, but did not 
onsider any pe
uliar-ities of wireless LANs, su
h as 
arrier sensing or 
ontention, so that their results
an be applied in other radio networks as well.In 
ontrast to this, [2℄ investigated the WLAN planning problem a

ountingfor the e�e
t of 
ontention introdu
ed by the CSMA/CA me
hanism. Theygive 0-1 hyperboli
 formulations and quadrati
 formulations for the problem ofmaximizing overall 
apa
ity with and without 
overing 
onstraints and for max-imizing fairness with respe
t to 
apa
ity. They only 
onsider a single-
hannels
enario, but 
laim that their proposed formulation 
an be easily generalized tomultiple 
hannels.[15℄ formulated a 
hannel assignment problem for CSMA/CA-based net-works, 
onsidering the 
umulative 
o-
hannel interferen
e from neighboring APsleading to a busy 
arrier sense signal. Their obje
tive is to minimize the max-imum 
hannel utilization experien
ed by an AP. The authors then proved thisproblem to be NP-
omplete and proposed a heuristi
, whi
h they applied totwo s
enarios with known optimal frequen
y assignments (hexagonally shapedlatti
e of 
ells) and uniform, �xed-power se
torized antennas.[13℄ provided an integer linear programming formulation, whi
h determines apla
ement of APs and a 
hannel assignment that maximizes 
hannel utilizationin a single step. However in their formulation, APs within interferen
e rangehave to always operate on di�erent 
hannels, whi
h makes the problem unsolv-able for s
enarios with many nearby APs and only few available non-overlapping
hannels.Finally, [16℄ proposed a method for joint AP pla
ement and 
hannel assign-ment whi
h permits 
o-
hannel overlapping and aims at maximizing throughputand fairness among stations.As we are interested in analyzing already deployed wireless LANs from dif-ferent domains, we do not 
onsider AP pla
ement and we also do not expe
tto be able to in�uen
e the hardware 
on�guration of APs. Instead, we fo
uson the dynami
ally adjustable aspe
ts whi
h a�e
t 
ontention: transmissionpower, 
hannel sele
tion and assignments of STAs to APs. Our obje
tive is tominimize 
ontention experien
ed by APs and STAs by taking into a

ount bothdire
t 
ontention via CSMA/CA's physi
al 
arrier sense as well as the virtual
arrier sense of the RTS/CTS extension. Note that as a result of transmissionpower assignment an AP 
an be swit
hed o�, so that we also have some formof sele
tion from 
andidate sites, but it is not an obje
tive to keep the numberof a
tive sites small. Finally, we do not make any assumptions about the size,shape or overlap of 
o-
hannel radio 
ells, as we expe
t all kinds of heterogeneityto o

ur in our s
enario under study and typi
ally not the traditional hexagonallatti
e.There has also been some work on radio resour
e management for wirelessLANs whi
h is 
omplementary to our work in that our approa
h 
an be usedas a ben
hmark for determining the e�e
tiveness of the proposed s
hemes inredu
ing 
ontention inside a domain or between domains:[6℄ des
ribed an ar
hite
ture in whi
h intelligent swit
hes 
ontrol APs withina single administrative domain to provide dynami
 
hannel assignment, dynami
transmit power 
ontrol and load sharing.[20℄ proposed an agent-based radio resour
e management system in whi
hthe APs belonging to the same network 
ooperate with ea
h other to providefull 
overage for present STAs and perform load balan
ing between them.3



[17℄ suggest the use of a radio resour
e broker that monitors tra�
 in the
onne
ted wireless LANs of di�erent domains as well as the interferen
e betweenthese domains and then 
ompensates networks with high tra�
 but mu
h inter-feren
e from other networks by assigning them more 
hannels and transmissionpower, whi
h it takes away from other domains.1.3 Contributions and Paper Stru
tureIn this paper, we do not (yet) address me
hanisms and strategies for redu
ing
ontention by 
oordinating independent wireless LANs. Instead we take onestep ba
k and explore how mu
h bene�t it is possible to a
hieve by introdu
ing
oordination at all. To this end we:
• propose a mathemati
al program for jointly determining the AP�STA as-so
iations as well as the transmission power and 
hannel assignment pa-rameters for all nodes of a CSMA/CA-based wireless LAN s
enario thatminimizes the amount of 
ontention in the system (Se
tion 2.1),
• present extensions of the basi
 model with only physi
al 
arrier sense toadditionally 
onsider RTS/CTS and also for the use of servi
e test pointsfor extended 
overage (Se
tions 2.2+2.3),
• show how to 
al
ulate a general lower bound on 
ontention in CSMA/CAnetworks with and without RTS/CTS (Se
tion 3.1),
• demonstrate how to transform our model into an equivalent linear modelthat allows us to solve small problem instan
es exa
tly using a linearoptimizer (Se
tion 3.2), and
• show how to solve larger problem instan
es using a geneti
 algorithmwhi
his spe
i�
ally tuned to our model (Se
tion 3.3).Finally, we 
on
lude our paper with a short summary and an outlook.2 Modeling the Minimal Contention Problem2.1 Networks with Low Tra�
 LoadsBefore a wireless station using CSMA/CA 
an start to transmit data, it needsto sense an idle 
hannel for a spe
i�ed amount of time (Distributed Inter FrameSpa
ing or DIFS in 802.11). Whether a 
hannel is idle or not is determinedby a Clear Channel Assessment (CCA) fun
tion of the physi
al layer. Depend-ing on the implementation and the 
hosen operation mode, the CCA would forexample indi
ate a busy 
hannel when a 
ertain energy dete
tion threshold isex
eeded (CCA Mode 1), when a valid signal from another station is dete
ted(CCA Mode 4), or a 
ombination of both (CCA Mode 5) [21℄. In this paper weassume that physi
al 
arrier sense is solely based on dete
tion of valid signalsfrom other stations. The reason for this is that the default energy dete
tionthreshold is usually mu
h higher than the signal level at whi
h transmissionsfrom a single stations 
an be dete
ted. Only in the rare 
ase that a station re-
eives simultaneous transmissions from multiple 
o-
hannel stations (i.e. when4



these stations sense an idle 
hannel both with physi
al and virtual 
arrier sense)would CCA Mode 1 dete
t a busy medium when CCA Mode 4 doesn't. Further-more, the energy dete
tion threshold is usually only adjustable in higher-pri
edequipment.The signal strength above whi
h a station is able to dete
t valid transmissionsfrom other stations is typi
ally mu
h lower than the signal strength requiredfor re
eiving transmissions at a desired data rate. Thus, a station whi
h isfarther away from a sending station than the intended re
eiver might still berestrained from sending to any other station, even though its transmission mightbe unproblemati
.As a �rst step, we will model a s
enario with wireless a

ess points andstations that use only simple CSMA/CA. Later we will extend the model forRTS/CTS operation.Let i denote a wireless node with i = 1, . . . , I + K, where I is the numberof a

ess points (APs) in the s
enario and K the number of stations (STAs).Nodes shall be ordered su
h that i = 1, . . . , I for APs and i = I + 1, . . . , I + Kfor STAs. Ea
h node i 
an transmit with a transmission power xi ∈ R between
0 and a node-spe
i�
 maximum allowed power si. On the way from a sender ito a re
eiver m, a signal experien
es a path loss given by pim

1. A re
eiving noderequires a minimum signal strength rm to be able to de
ode a frame transmittedat the desired data rate 
orre
tly. If a node i re
eives a signal from another nodewith a power above or equal to li, its CCA will report the 
hannel as busy.APs and their asso
iated STAs form a basi
 servi
e set (BSS). A BSS 
anoperate on one of J di�erent non-overlapping radio 
hannels, j = 1, . . . , J . yij isa binary variable indi
ating whether node i 
urrently uses 
hannel j or not. Wefurther de�ne a binary variable fim indi
ating whether a node i (whi
h mustbe a STA) is 
urrently asso
iated to node m (an AP) and a helper variable
e

pc
im whi
h indi
ates whether node i is a potential 
ontender of node m. Withpotential 
ontender we mean that node m is 
lose enough to i that it 
an dete
t

i's 
arrier if both are operating on the same 
hannel. In summary, our �rstmodel takes as input
• si: the maximum transmission power of node i

si ∈ R, i = 1, . . . , I + K

• ri: the minimum re
eption power requirement of node i

ri ∈ R, i = 1, . . . , I + K

• li: the minimum signal power for node i to dete
t the 
hannel as busy
li ∈ R, i = 1, . . . , I + K

• pim: the signal propagation loss from node i to node m

pi ∈ R, i = 1, . . . , I + K, m = 1, . . . , I + Kand the following de
ision variables:
• xi: the 
urrent transmission power of node i,

xi ∈ R, i = 1, . . . , I + K1Note that we assume dBm as the unit of signal strength. Due to its logarithmi
 s
ale,losses (negative values) in dB are a
tually added to the transmission power to 
al
ulate there
eived signal strength. 5



• yij =

{

1 i� node i is set to 
hannel j

0 otherwise
yij ∈ {0, 1} , i = 1, . . . , I + K, j = 1, . . . , J

• fim =

{

1 i� AP i is responsible for STA m

0 otherwise
fim ∈ {0, 1} , i = 1, . . . , I, m = I + 1, . . . , I + K

• e
pc
im =

{

1 i� node i is potential 
ontender of node m

0 otherwise
e

pc
im ∈ {0, 1} , i = 1, . . . , I + K, m = 1, . . . , I + KA valid solution of our optimization problem needs to satisfy several 
onstraints,whi
h we will dis
uss in detail.First of all, ea
h node's transmission power must be between zero and thenode-spe
i�
 maximum:

0 ≤ xi ≤ si, i = 1, . . . , I + K (1)All STAs have to re
eive their minimum power requirement from the AP theyare asso
iated to:
xi + pim ≥ fimrm, i = 1, . . . , I, m = I + 1, . . . , I + K (2)Likewise, all APs have to re
eive their minimum power requirement from theSTAs in their BSS:
xm + pmi ≥ fimri, i = 1, . . . , I, m = I + 1, . . . , I + K (3)All STAs are asso
iated to exa
tly one AP:

I
∑

i=1

fim = 1, m = I + 1, . . . , I + K (4)Ea
h AP and STA uses exa
tly one 
hannel:
J

∑

j=1

yij = 1, i = 1, . . . , I + K (5)All STAs use the 
hannel of the AP whi
h they are asso
iated to:
yij − ymj − (1 − fim) ≤ 0, (6)

i = 1, . . . , I, m = I + 1, . . . , I + K, J = 1, . . . , JFinally, we for
e e
p
im to be 1 if nodes i and m are so 
lose to ea
h other, that

m dete
ts the 
hannel busy if i 
urrently transmits on the same 
hannel (for
i 6= m, of 
ourse, sin
e nodes 
annot 
ontend for a

ess with themselves):

xi + pim ≤ lm + e
pc
imMim, Mim = si + pim − lm (7)

i = 1, . . . I + K, m = 1, . . . , I + K ∧ i 6= m

e
pc
ii = 0, i = 1, . . . , I + K (8)6



Considering that a node 
an only 
ontend for a

ess with another node whenboth are on the same 
hannel, we are able to 
al
ulate am, the number of nodes
ontending for a

ess with node m:
am =

I+K
∑

i=1

e
pc
im





J
∑

j=1

yijymj



 (9)Our obje
tive is then to minimize the amount of 
ontention experien
ed by thenodes in the system:
min

I+K
∑

m=1

am = min

I+K
∑

m=1

I+K
∑

i=1

e
pc
im





J
∑

j=1

yijymj



 (10)This optimization problem requires I2 + K2 + 3IK + (J + 1)
(I + K)de
ision variables and I2 + K2 + (J + 4) IK + 2I + 3K 
onstraints andis unfortunately of multipli
ative form, whi
h makes it still di�
ult to solve. Inse
tion 3.2 we will show how to make this problem solvable by transforming itinto an equivalent linear problem.2.2 Networks with High Tra�
 LoadsWhen tra�
 in the wireless network in
reases, so does the number of 
ollisions oftransmission attempts. In wireless networks with high tra�
 loads, a me
hanism
alled RTS/CTS, �rst proposed as part of the MACA proto
ol [9℄, is usually employed toin
rease utilization.In CSMA/CA with RTS/CTS, when a node i wants to transmit data toa node m, it �rst sends a small Request To Send (RTS) frame 
ontaining there
eiver address and the duration of the transmission in
luding the �nal ACK.Upon re
eiving the RTS frame, m reponds with a Clear To Send (CTS) frame,whi
h 
ontains the remaining transmission duration as well. All other nodes(APs and STAs) whi
h 
an hear either the RTS or the CTS store the time duringwhi
h the medium is expe
ted to be busy in their lo
al network allo
ation ve
tor(NAV) timer and then defer a

ess until the transmission between i and m isover. Sin
e the spe
i�ed pro
edure of deferring a

ess is similar to the physi
al
arrier sense des
ribed in the previous se
tion, this me
hanism is 
alled virtual
arrier sense.A
tivating RTS/CTS has the advantage, that 
ollisions 
an in general onlyo

ur on RTS transmissions. As RTS frames are 
omparatively small, the 
ol-lision probability is signi�
antly redu
ed. Furthermore RTS/CTS solves thehidden terminal problem, where two stations that 
annot hear ea
h other try tosend data to the same a

ess point simultaneously. As a drawba
k, more sta-tions experien
e 
ontention indire
tly, as they are within 
arrier sense distan
eof a node re
eiving a transmission.We are now going to extend the previous model for the 
ase of CSMA/CAnetworks using RTS/CTS. This is simple as the previous model already a

ountsfor 
al
ulating the number of dire
t 
ontenders for a given node m. There, adire
t 
ontender was de�ned as a node whi
h, when it transmits, 
auses m todefer transmissions due to a positive physi
al 
arrier sense indi
ation, whi
h7



is equivalent to the e�e
t of the virtual 
arrier sense after re
eption of a RTSframe. All we have to do further is to take into a

ount those 
ontenders i, whi
hinterfere with m's transmissions by being able to send RTS frames to at leastone node k whose CTS answers m 
an hear. We 
all i an indire
t 
ontender of
m, if it is not a dire
t 
ontender at the same time, so that the sets of dire
t andindire
t 
ontenders for a given node are disjoint. To indi
ate that a node is notpotential 
ontender of another node, we need to de�ne a new helper de
isionvariable e

npc
im :

xi + pim ≥ lm − e
npc
im Mim, Mim = lm − pim (11)

i = 1, . . . I + K, m = 1, . . . , I + K ∧ i 6= m

e
npc
ii = 1, i = 1, . . . , I + K (12)We 
an now extend amwith the number of indire
t 
ontenders, but have to takeinto 
onsideration that APs only send to STAs but not to other APs and vi
eversa. Furthermore, an AP that does not have STAs assigned should not be
ounted as an indire
t 
ontender. On the other hand, if it has STAs, it shouldbe 
ounted exa
tly on
e, no matter how many STAs are assigned to it. This iswhy we introdu
e the step fun
tion σ (x). Our obje
tive fun
tion thus be
omes:

min

I+K
∑

m=1

am,

am =

I+K
∑

i=1

e
pc
im





J
∑

j=1

yijymj





+

I
∑

i=1

σ





I+K
∑

k=I+1

fike
pc
ike

pc
kme

npc
im





J
∑

j=1

yijykjymj









+

I+K
∑

k=I+1

I
∑

i=1

fike
pc
kie

pc
ime

npc
km





J
∑

j=1

yijykjymj



 (13)
σ (x) =

{

1 x > 0
0 x ≤ 0This model extension adds (I + K)2 de
ision variables and (I + K)2 
onstraints.Note that e

pc
ik and e

pc
ki always have the same value as fik, sin
e a STA and theAP it is asso
iated to need to be able to hear ea
h other. We 
an thereforesimply omit these variables in the obje
tive fun
tion.2.3 Networks with Spe
i�ed Coverage AreaTo minimize 
ontention in a parti
ular s
enario, the optimizer tries to redu
etransmission power as mu
h as possible. In the previous models, the only 
on-straint to this is that the minimum signal strength requirements of all APs andSTAs has to be met. As a result, an optimization tends to produ
e 
on�gu-rations in whi
h the radio 
ell of ea
h AP is only big enough to rea
h all its8



asso
iated stations, resulting in 
overage holes between 
ells. In parti
ular inthe 
ontext of wireless 
ommunity networks, this is not desirable behaviour.In order to enable us to study the 
ase of independent APs providing 
ontin-uous 
overage of hot spot areas as well, we adopted the 
on
ept of servi
e testpoints used in planning of mobile tele
ommuni
ation networks[7℄. Servi
e testpoints (STPs) de�ne lo
ations at whi
h at least one of the APs must providethe spe
i�ed minimum required signal strength. Besides this, STPs are 
om-pletely passive, i.e. they do neither transmit nor re
eive data and therefore donot 
ontribute to 
ontention themselves.We rede�ne i to additionally in
lude STPs as �virtual� wireless nodes: i =
1, . . . , I + K + N . Nodes shall be ordered as before with respe
t to APs andSTAs, but nodes i = I + K + 1, . . . , I + K + N now denote the new STPs. Ourparameters ri and pim need to provide settings for the STPs as well, and wealso need additional de
ision variables for assigning a STP to an AP that shall
over it.

• fim =

{

1 i� AP i is responsible for STA or STP m

0 otherwise
fim ∈ {0, 1} , i = 1, . . . , I, m = I + 1, . . . , I + K + NAll STAs and STPs have to re
eive their minimum power requirement from theAP they are asso
iated to:

xi + pim ≥ fimrm, i = 1, . . . , I, m = I + 1, . . . , I + K + N (14)The other de
ision variables, 
onstraints, and the obje
tive fun
tions remainthe same, whi
h means that this extension requires IN de
ision variables and
IN 
onstraints more than the previous model.3 Solving the Minimal Contention Problem3.1 Theoreti
al Lower BoundsIn this se
tion, we derive theoreti
al lower bounds on the minimum 
ontentionfor both low and high tra�
 s
enarios. The bounds are based on optimisti
assumptions about possible 
ontention between APs and STAs, i.e. a best-
aseanalysis is performed for a given number of STAs and APs.The low and high tra�
 s
enario are distinguished from ea
h other by thefa
t that the high tra�
 s
enario also takes into a

ount indire
t 
ontentionindu
ed by the RTS/CTS me
hanism, besides also a

ounting for dire
t 
on-tention between nodes that are within ea
h others' radio range. Let us �rstderive the more general bound for the high tra�
 s
enario before the boundfor the low tra�
 s
enario 
an only be stated as a spe
ial 
ase without indire
t
ontention.As above, let I denote the number of APs and K the number of STAs. Wemake the following two optimisti
 assumptions:1. APs (and their asso
iated STAs) do not 
ontend with APs (and STAs) ofother basi
 servi
e sets.2. STAs assigned to a given AP do not 
ontend with ea
h other.9



The �rst assumption requires APs (and their asso
iated STAs) to either bespa
ed far away enough from ea
h other or to use di�erent 
hannels. The se
ondassumption is optimisti
 in the spa
ing between STAs that are asso
iated to thesame AP.Let ni denote the number of STAs asso
iated to AP i. Under these assump-tions the overall 
ontention 
an be 
al
ulated as follows:
C =

I
∑

i=1

(2ni + ni(ni − 1)) =

I
∑

i=1

n2
i + niThis is due to the fa
t that an AP is in dire
t 
ontention with ea
h of itsasso
iated STAs and that ea
h STA is in indire
t 
ontention with ea
h otherSTA asso
iated to the same AP. This 
ontention is minimal if the STAs are asuniformly distributed over the APs as possible:Proposition: C is minimal if ∀i, j ni + 1 ≥ nj .Proof: Assume C is minimal for a given assignment of STAs to APs but

∃i0, j0 with ni0 + 1 < nj0 . That means ∃k ≥ 2 with ni0 + k = nj0 . Hen
e, with
A =

∑I

i=1,i6=i0,i6=j0
n2

i + ni

C = A + n2
i0

+ (ni0 + k)2 + ni0 + ni0 + k

= A + 2n2
i0

+ 2ni0k + k2 + 2ni0 + k

> A + 2n2
i0

+ 2ni0k + k2 − 2(k − 1) + 2ni0 + k

= A + (ni0 + 1)
2

+ (nj0 − 1)
2

+ (ni0 + 1) + (nj0 − 1)This 
ontradi
ts the assumption that C is minimal for this distribution, as it
an be improved by reassigning STAs to APs and thus the proposition must be
orre
t.We therefore make the further optimisti
 assumption, that the APs a
hievea perfe
t load balan
ing with respe
t to their assigned STAs (modulo 1) to �nda lower bound on 
ontention for a given number of APs and STAs.For the high tra�
 s
enario that means the lower bound is given by
C = K + m(n + 1) + (I − m)n + mn(n + 1) + (I − m)n(n − 1) (15)where n = K div I is the number of STAs per AP (possibly plus one) and

m = k mod I is the number of APs with one STA more than others.For the low tra�
 s
enario we obtain as a spe
ial 
ase the following lowerbound
C = K + m(n + 1) + (I − m)n (16)Note that these bounds make very optimisti
 assumptions on the spatial dis-tribution of nodes and assume enough 
hannels to prevent 
ontention betweenbasi
 servi
e sets. Hen
e, in some a
tual s
enarios they 
an be very loose lowerbounds.3.2 Exa
t Solving by Linear TransformationThe problem presented in Se
tion 2.3 has a polynominal stru
ture, as the termsof the obje
tive fun
tion are produ
ts of three and more variables. The binary10



nature of variables allows us to adopt the te
hnique from [3℄ to derive an equiv-alent linear model at the 
ost of additional de
ision variables and 
onstraints.For every produ
t of binary variables we introdu
e a new variable and substituteit with a produ
t whi
h is then transformed to a new 
onstraint.We substitute edc
im := e

pc
imyijymj , eicAS

im := fike
pc
kme

npc
im yijykjymj , and eicSA

im :=
fike

pc
ime

npc
km yijykjymj by adding the following variables:

• edc
im =

{

1 i� node i is dire
t 
ontender of node m

0 otherwise
edc

im ∈ {0, 1} , i = 1, . . . , I + K, m = 1, . . . , I + K

• eicAS
im =

{

1 i� AP i is indire
t 
ontender of node m

0 otherwise
eicAS

im ∈ {0, 1} , i = 1, . . . , I, m = 1, . . . , I + K

• eicSA
im =

{

1 i� STA i is indire
t 
ontender of node m

0 otherwise
eicSA

im ∈ {0, 1} , i = I + 1, . . . , I + K, m = 1, . . . , I + KThe produ
ts are then added as new 
onstraints:For
e edc
im to be 1 if node i is potential 
ontender of m and both use the same
hannel

e
pc
im + yij + ymj − edc

im ≤ 2, (17)
i = 1, . . . , I + K, m = 1, . . . , I + K, j = 1, . . . , JFor
e eicAS

im to be 1 if AP i sends an RTS to its asso
iated STA k and node m
an hear k's CTS, but not the original RTS
fik + e

pc
km + e

npc
im + yij + ykj + ymj − eicAS

im ≤ 5, (18)
i = 1, . . . , I, k = I + 1, . . . , I + K, m = 1, . . . , I + K, j = 1, . . . , JFor
e eicSA
im to be 1 if STA i sends RTS to its AP k and node m 
an hear k'sCTS, but not the original RTS:

fki + e
pc
km + e

npc
im + yij + ykj + ymj − eicSA

im ≤ 5, (19)
i = I + 1, . . . , I + K, k = 1, . . . , I, m = 1, . . . , I + K, j = 1, . . . , JFinally we obtain our new linear obje
tive fun
tion:

min

I+K
∑

m=1

am,

am =

I+K
∑

i=1

edc
im +

I
∑

i=1

eicAS
im +

I+K
∑

i=I+1

eicSA
im (20)This new formulation 
an now be solved with any mixed integer program solver.For our evaluations, we have used the open-sour
e software lp_solve[1℄. Duringour initial testing we found out that we 
ould vastly improve the time that11



lp_solve takes to �nd the optimal solution, by giving it a hint to use all available
hannels. We did this by adding the following additional 
onstraints:
I

∑

i=1

yij ≥ 1, j = 1, . . . , J (21)Note that this hint helped lp_solve to more qui
kly redu
e the sear
h spa
e byenabling a better bran
hing, although it might not have the same e�e
t withother solvers that follow a di�erent bran
h and bound strategy.3.3 Solving by a Custom Geneti
 Algorithm Heuristi
As we have only been able to solve small problem instan
es exa
tly with lp_solveso far, we de
ided to implement a geneti
 algorithm (GA) that is spe
ially tai-lored to our optimization models and allows us to study large problem instan
esas well. Our GA repeats the following steps iteratively until the population has
onverged:1. Generate a new generation of individuals by re
ombining randomly 
hosenpairs of parent individuals.2. Mutate ea
h gene of an individual with a probability of pmutation. Trans-mission powers xi ∈ R are mutated by adding a random value drawn froma Gaussian distribution with mean 0 and a standard deviation of σi to it,where σi is adapted during evolution. Radio 
hannels and AP asso
iationsare mutated by randomly 
hoosing a new value from the respe
tive set ofallowed values.3. Finally, we use a tournament sele
tion strategy, where randomly 
hosenpairs of individuals taken from both parent and 
hild generation 
ompetewith ea
h other and the �tter individual of ea
h pair (i.e. one with thelower 
ontention) survives until the next round.Up to now, the algorithm is pretty mu
h standard. However, we have hadgood experien
e with equipping our GA with a spe
ial 
rossover operator anda healing strategy.A

ording to the building-blo
k hypothesis [4℄, one should arrange the geneson an individual's 
hromosome in su
h a way that those genes that are 
orrelatedin their in�uen
e on an individual's �tness should be pla
ed 
lose to ea
h other,so that it is less likely that the 
ross-over operator would tear them apart duringre
ombination. We have therefore arranged genes representing a node's trans-mission power, 
hannel sele
tion and AP assignment on a 2-dimensional planeinstead of the traditional 1-dimensional string, and we have done so in su
h away that the distan
e relationships between nodes are preserved on the 
hro-mosome. Our 
rossover operator then 
hooses a random straight 
ut throughthe 
hromosome plane, re
ombining the 
ut-o� 
hromosome fragments of the
hosen pair of individuals.Furthermore, in order to improve the 
han
es of obtaining a large amountof valid solutions within our population, we apply a healing strategy afterea
h iteration. The healing pro
ess involves two phases. First, it sear
hesfor nodes whose minimum signal strength requirements are not met and adapts12



the sender's transmitting power to the required value, if it does not ex
eed themaximum allowed power. If this is not su

essful, the healing pro
ess tries to�nd a better AP to asso
iate to for all STAs in turn.In order to test the quality of results produ
ed by our GA against the opti-mum results provided by the solver, we have generated 6 di�erent s
enarios of 4APs and 5 STAs ea
h. APs have been pla
ed in lo
ations drawn from a bivari-ate normal distribution around the 
enter of a 1km x 1km simulation area, withthe 
onstraints that they are not 
loser than 20m and not farther than 150mapart from the next AP. The lo
ation of ea
h STA was 
hosen by pi
king anAP randomly and then pla
ing the STA within a distan
e of 10% to 90% of the
ell's radius from the AP, drawn from a uniform distribution. We then 
al
u-lated the path losses between ea
h pair of nodes based on the empiri
al indoorpropagation loss model re
ommended in ITU-R P.1238-2 [18℄. The maximumtransmission power si for ea
h node was set to 20dBm (or 100mW), whi
h isthe maximum power allowed for IEEE 802.11b wireless LANs in Europe. Wehave set li, the minimum signal strength to dete
t a busy medium, and ri, theminimum signal strength requirement of a node to -84dBm and -82dBm, respe
-tively, as these are typi
al values for an Orino
o Gold IEEE 802.11b adapter.In Table 1 we have listed the minimum 
ontention for all 6 s
enarios, as
al
ulated by the GA for 2 to 4 available 
hannels, averaged over 5 indepen-dent simulation runs ea
h. The table also shows the minimum 
ontention as
al
ulated by the solver and the general lower bound for networks of 4 APs and5 STAs, based on our results from Se
tion 3.1. As a worst 
ase estimate, wehave further listed the average results of 5 runs of a single, randomly generatedsolution (Monte Carlo (MC)), with one appli
ation of the healing pro
ess togenerate valid solutions. As the results of our experiments show, the theoreti
allower bound 
an be rea
hed in all 6 s
enarios if there are 4 available 
hannels.The fa
t that the lower bound has been rea
hed means that all but one APhave one STA assigned, the other has 2 STAs. Note that this well-balan
ed
ase 
an usually not be rea
hed in larger s
enarios. As the number of available
hannels de
reases, it is not possible to avoid 
ontention between basi
 servi
esets anymore in some of the s
enarios. Note that in most 
ases, the GA wasable to �nd the optimal solution.Figure 1 shows an average of the pairwise di�eren
e between the resultsof the GA and the exa
t solver as well as of the MC and the exa
t solver,respe
tively. It also shows the 
on�den
e interval based on the 95%-quantile ofthe t-distribution. The lower 
urve shows that the GA almost always �nds the
on�guration with minimal 
ontention. A random but valid assignment leads tomu
h higher 
ontention, espe
ially when there are only few 
hannels available.To demonstrate the performan
e of the GA, we have also applied it to twolarger s
enarios. For the �rst s
enario, we 
reated a simulation area of 3km x3km regularily 
overed with 144 APs and then added 66 APs randomly. 400STAs were pla
ed with the same method as before. The se
ond s
enario wassimilarly 
reated with 64+36 APs and 500 STAs within a 2km x 2km area. Inthis set of experiments, we have used a simple lo
al sear
h heuristi
 to furtherimprove the solution determined by the GA. The heuristi
 works by testingea
h wireless node, whether a small 
hange of transmission power or a single
hange of 
hannel would yield any improvement 
ompared to the solution foundby the GA. If so, the improvement is made and the probing is repeated, untilno further improvements 
an be found. Table 2 shows the minimum 
ontention13



Available Channels1 2 3 4LB 12 12 12 12OPT 1 42 20 14 122 28 12 12 123 17 12 12 124 34 14 12 125 19 12 12 126 33 15 12 12GA 1 42.0 20.0 14.0 12.02 28.4 12.0 12.0 12.03 17.0 12.4 12.0 12.04 34.8 14.0 12.0 12.05 19.0 13.6 12.4 12.06 33.0 15.0 12.4 12.0MC 1 58.8 40.0 24.2 27.62 44.8 28.6 23.2 26.83 67.0 46.4 24.2 23.64 62.4 29.6 35.8 24.25 62.2 30.4 28.0 23.46 45.4 29.0 23.4 22.2Table 1: Minimum 
ontention for varying number of available 
hannels in 6di�erent s
enarios of 4 APs and 5 STAs ea
h.
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S
enario200x400 100x500LB (no RTS) 800 100% 1000 100%GA (no RTS) 1202 150% 2199 220%MC (no RTS) 2255 282% 4872 487%LB (w/RTS) 1200 100% 3000 100%GA (w/RTS) 1582 132% 3476 116%MC (w/RTS) 3026 252% 6822 227%Table 2: Contention in two large CSMA/CA-based wireless LANs, with andwithout RTS/CTS.
200m

Figure 2: Example of a solved problem.values found by the GA both as absolute values and as values relative to thetheoreti
al lower bound (LB). For better 
omparison, we have also provided the
ontention values of a 
ompletely random, but valid 
on�guration (MC). Notethat the GA is able to almost halve the 
ontention 
ompared to the random
on�guration. It is still far from the theoreti
al lower bound, but as mentionedabove, for su
h sizes it is extremely unlikely that this lower bound is rea
hable,as it optimisti
ally assumes that perfe
t load-balan
ing is possible in the s
enariounder study. Note also, that minimal 
ontention in
reases drasti
ally when theRTS/CTS extension is used, as more 
o-
hannel nodes from di�erent wirelessLANs experien
e 
ontention due to the virtual 
arrier sense. Figure 1 showsone of the minimum 
ontention 
on�gurations 
al
ulated by the GA.4 Con
lusionsContention in wireless LANs is a result of the CSMA/CA random multiplea

ess s
heme. Proper network planning 
an redu
e 
ontention inside a sin-gle administrative domain, but is di�
ult�if not impossible�to do so a
ross15



administrative domains. As inter-domain 
ontention leads to ine�
ient use ofradio resour
es, some form of 
oordination between neighboring wireless LANsshould be employed. The obje
tive of our paper was to propose a method todetermine a lower bound on 
ontention for a given network s
enario, whi
hmight improve our understanding of inter-domain 
ontention issues and serveas a ben
hmark for proposed inter-domain 
oordination s
hemes.In parti
ular we have 
ontributed mathemati
al optimization models that
an be used to jointly determine the optimal transmission power settings and
hannel assignments for a

ess points and stations, as well as the optimal as-signments of stations to a

ess points whi
h will result in the least amount of
ontention in the network. The proposed models 
over the 
ase of low tra�
intensity, in whi
h only physi
al 
arrier sense is used, the 
ase of high tra�
 in-tensity, 
onsidering the additional 
ontention 
aused by RTS/CTS frames, and�nally the 
ase that a wireless LAN is supposed to provide 
ell-like 
overage byintrodu
ing servi
e test points whi
h need to be 
overed. Further extensions,su
h as priorization of a

ess points with respe
t to 
ontention or additionalobje
tives su
h as power saving for mobile stations 
an easily be in
luded intoour models.In addition, we have shown how to 
al
ulate a general lower bound for 
on-tention both in the 
ase of CSMA/CA networks with and without RTS/CTS,we have provided a transformation of our model to make it solvable with linearoptimizers for small instan
es, and we have presented a geneti
 algorithm whi
his spe
ially tailored to solve our 
ontention minimization problem, but is likelyto be useful in other wireless network optimization problems as well.Our admittedly preliminary results make us 
on�dent that there is mu
hpotential for improving inter-domain 
ontention by 
oordination. They alsoshow that our spe
ially tuned geneti
 algorithm is able to �nd near-optimum
on�gurations for the minimal 
ontention problem.We are 
urrently working on an algorithm to determine a tighter lower boundfor 
ontention that makes better use of the pe
uliarities of the s
enario understudy and, even more importantly, we are also �nalizing our work on a �rst
ompletely distributed 
oordination s
heme, whi
h we will ben
hmark usingour model.Referen
es[1℄ lp_solve. http://groups.yahoo.
om/group/lp_solve/.[2℄ E. Amaldi, A. Capone, M. Cesana, and F. Malu
elli. Optimizing WLANRadio Coverage. In IEEE International Conferen
e on Communi
ations(ICC 2004), pages 180�184, Paris, Fran
e, June 2004.[3℄ F. Glover and R.E. Woolsey. Note on 
onverting the 0-1 polynomial pro-gramming problems to zero-one linear programming problems. OperationsResear
h, 22:180�181, 1974.[4℄ D.A. Goldberg. Geneti
 Algorithms in Sear
h, Optimization, and Ma
hineLearning. Addison-Wesley, 1989.[5℄ J.K. Han, B.S. Park, Y.S. Choi, and H.K. Park. Geneti
 Approa
h witha New Representation for Base Station Pla
ement in Mobile Communi
a-16



tions. In 54th IEEE Vehi
ular Te
hnology Conferen
e (VTC 2001 Fall),pages 2703�2707, O
tober 2001.[6℄ A. Hills and B. Friday. Radio Resour
e Management in Wireless LANs.IEEE Communi
ations Magazine, 42(10):9�14, De
ember 2004.[7℄ S. Hurley. Planning E�e
tive Cellular Mobile Radio Networks. IEEE Trans-a
tions on Vehi
ular Te
hnology, 51(2):243�253, Mar
h 2002.[8℄ M. Kamenetsky and M. Unbehaun. Coverage Planning for Outdoor Wire-less LAN Systems. In 2002 International Zuri
h Seminar on BroadbandCommuni
ations A

ess, Transmission, Networking, pages 491�496, Mar
h2002.[9℄ P. Karn. MACA � A New Channel A

ess Method for Pa
ket Radio. InPro
eedings of the ARRL 9th Computer Networking Conferen
e, pages 134�140, London, Ontario Canada, September 1990.[10℄ I. Katzela and M. Naghshineh. Channel Assignment S
hemes for Cellu-lar Mobile Tele
ommuni
ation Systems: A Comprehensive Survey. IEEEPersonal Communi
ations, 3(3):10�31, June 1996.[11℄ S.O. Krumke, M.V. Marathe, and S.S. Ravi. Models and ApproximationAlgorithms for Channel Assignment in Radio Networks. Wireless Networks,7(6):575�583, November 2001.[12℄ C.Y. Lee and H.G. Kang. Cell planning with Capa
ity Expansion in Mo-bile Communi
ations: A Tabu Sear
h Approa
h. IEEE Transa
tions onVehi
ular Te
hnology, 49(5):1678�1691, Mar
h 2000.[13℄ Y. Lee, K. Kim, and Y. Choi. Optimization of AP Pla
ement and ChannelAssignment in Wireless LANs. In IEEE Conferen
e on Lo
al ComputerNetworks (LCN 2002), 2002.[14℄ R.A. Leese. A Uni�ed Approa
h to the Assignment of Radio Channels on aRegular Hexagonal Grid. Transa
tions on Vehi
ular Te
hnology, 46(4):968�980, November 1997.[15℄ K.K. Leung and B.-J. Kim. Frequen
y Assignment for IEEE 802.11 Wire-less Networks. In 58th IEEE Vehi
ular Te
hnology Conferen
e (VTC 2003Fall), pages 1422�1426. IEEE, O
tober 2003.[16℄ X. Ling and K.L. Yeung. Joint A

ess Point Pla
ement and Channel As-signment for 802.11 Wireless LANs. In IEEE Wireless Communi
ationsand Networking Conferen
e (WCNC 2005), 2005.[17℄ Y. Matsunaga and R.H. Katz. Inter-Domain Radio Resour
e Manage-ment for Wireless LANs. In IEEE Wireless Communi
ations and Network-ing Conferen
e (WCNC 2004), pages 2183�2188, Atlanta, Georgia, USA,Mar
h 2004.[18℄ ITU-R P.1238-2. Propagation data and predi
tion methods for the plan-ning of radio 
ommuni
ation systems and radio lo
al area networks in thefrequen
y range of 900 MHz to 100 GHz, 2001.17



[19℄ P. Struhsake. WLAN Channel Bonding: Causing Greater Problems ThanIt Solves. White Paper SPLY003, Texas Instruments, September 2003.[20℄ Y. Wang, L. Cuthbert, and J. Bigham. Intelligent Radio Resour
e Man-agement for IEEE 802.11 WLAN. In IEEE Wireless Communi
ations andNetworking Conferen
e (WCNC 2004), pages 1365�1370, Atlanta, GergiaUSA, Mar
h 2004.[21℄ IEEE 802.11 WG. Part 11: Wireless LAN Medium A

ess Control (MAC)and Physi
al Layer (PHY) Spe
i�
ations. IEEE Standard, August 1999.

18


