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tCo-
hannel interferen
e and 
ontention at shared medium a

ess maysigni�
antly redu
e the utilization of s
ar
e radio frequen
y resour
es anddegrade the performan
e of a CSMA/CA-based wireless LAN. While bothphenomena may be 
ontrolled within a single administrative domain by
hoosing appropriate a

ess point installation sites and assigning operat-ing 
hannels intelligently, there is usually little that 
an be done againstinterferen
e by a

ess points from other nearby administrative domains.This problem be
omes paramount in so-
alled wireless 
ommunity net-works (based on wireless LAN te
hnology), as ea
h a

ess point is oper-ated by a di�erent owner and 
an be viewed as a separate domain. Further,the situation is aggravated by the fa
t that wireless 
ommunity networksare not pre-planned but grow wildly and evolutionary. Until re
ently, theproblem of inter-domain 
ontention in wireless LANs has re
eived littleattention. In this paper, we give a mathemati
al programming formula-tion of the minimum inter-domain 
ontention problem and present twotheoreti
al lower bounds on 
ontention. A spe
i�
ally-tuned geneti
 algo-rithm is then introdu
ed that 
an be used to �nd near-optimal solutionsin larger s
enarios and serves us as ben
hmark for the main 
ontributionof this paper: a distributed algorithm and proto
ol for self-
oordination ofa

ess points from di�erent domains based solely on knowledge about theimmediate neighborhood.1 Introdu
tion1.1 Ba
kground and MotivationThe emergen
e of wireless 
ommunity networks as for example NYCwireless[2℄is a remarkable and growing phenomenon and provides the major motivationfor our work on self-
oordination me
hanisms in wireless networks (although it1



may be appli
able to other s
enarios as well). Wireless 
ommunity networksare based on a

ess points whi
h are independently run by volunteers with theirown equipment. The 
ommon goal is to enable sharing of wireless Interneta

ess with other members of the 
ommunity, gradually growing the network toa large, 
ity-wide s
ale. The growth of su
h networks is 
onsiderable, with e.g.about 150 a

ess point in the NYCwireless. This su

ess is fueled by the low
ost of wireless LAN te
hnology and by its relatively easy usage.Unlike mobile tele
ommuni
ation networks, wireless LANs (WLANs) aretypi
ally deployed on a small s
ale and in a rather ad-ho
 manner. Publi
 orprivate organizations intending to 
over their premises with WLAN a

ess oftenmerely rely on expert knowledge and 
ommon best pra
ti
es when planning theirnetworks or use one of the 
ommer
ially available WLAN planning tools thatallow a user to determine a

ess point (AP) installation sites with 
omparativelylow e�ort for in-situ measurements. Most single AP installations in privatehomes (whi
h are the basis for a wireless 
ommunity network) are not plannedat all.Improperly lo
ated APs and a bad frequen
y assignment frequently resultin 
o-
hannel interferen
e and 
ontention due to the CSMA/CA random a

essproto
ol of WLANs. Espe
ially in areas with a high density of APs from di�erentadministrative domains, e.g. student dormitories, multi-tenant o�
e buildingset
., the utilization of s
ar
e frequen
y resour
es and the performan
e of thewireless LAN a

ess network is usually low.Interfering APs under di�erent administrative 
ontrol are hard to 
ir
um-vent, espe
ially sin
e the number of available non-overlapping 
hannels is low(typi
ally 3 in 802.11b/g, 12 in 802.11a, depending on regulations). The prob-lem might even be
ome worse, if the spatial density of wireless LANs in
reases(as it does for wireless 
ommunity networks), if more vendors adopt proprietary
hannel bonding te
hniques[23℄ to in
rease the throughput of their produ
ts,or if more produ
ts that are not 802.11-friendly use the li
ense exempt ISMand U-NII frequen
y bands. Furthermore, although radio 
hannels in 802.11aare non-overlapping, re
eivers of many 
heaper wireless LAN adapters 
annot
leanly �lter out single 
hannels. As a result they experien
e interferen
e fromadja
ent 
hannels as well.A solution to all these problem is to introdu
e 
oordination me
hanismsbetween APs of di�erent administrative domains. While produ
ts su
h as wire-less swit
hes[4℄ and self-
on�guring APs[3℄ are a step towards radio resour
emanagement inside single administrative domains, the problem of inter-domain
ontention has only re
ently started to attra
t the attention of the s
ienti�

ommunity[21℄. In a wireless 
ommunity network a further step towards theself -
oordination of a very large number of domains needs to be taken.Following up on some of our initial work on the problem of minimal inter-domain 
ontention in wireless LANs[27℄, in this paper we present a distributedalgorithm and proto
ol for the self-
oordination of APs from a potentially largenumber of di�erent administrative domains. We have taken a distributed, butlo
al approa
h using only regional knowledge, as this lends more naturally to theproblem of self-
oordination between a large number of di�erent domains. Our2



algorithm 
urrently assumes 
ooperative behavior between APs parti
ipatingin the proto
ol. It is therefore well suited for the use in wireless 
ommunitynetworks, where this 
ooperation is a pre
ondition anyway and in whi
h theowners of APs often 
annot know all other owners on a personal level but mustrely on the self-organization of the wireless network.1.2 Related WorkSubstantial resear
h 
ontributions exist on the planning of mobile tele
ommu-ni
ation networks. One aspe
t of planning in this 
ontext is the sele
tion ofinstallation sites from a set of available 
andidate sites (e.g. [16, 9℄). This 
anbe 
ombined with the 
on�guration of base stations, e.g. 
hoosing antenna typesand orientation, and transmission power [11℄. Often, the pla
ement problem hasmultiple, 
ompeting obje
tives, su
h as maximizing 
overage, maximizing 
apa
-ity, and minimizing installation 
ost. Channel assignment is another importantplanning aspe
t whi
h has been studied both for �xed and dynami
 assignments(e.g. [14, 15, 18℄). Di�erent heuristi
s su
h as simulated annealing [11℄, geneti
algorithms [9℄, and tabu sear
h [16℄ have been used for both of these aspe
ts.Partially, the work on 
ellular networks 
an be applied in the 
ontext ofsingle-domain wireless LANs as well. For example, [12℄ formulated a 
overageplanning problem for outdoor wireless LANs, but did not 
onsider any pe
uliar-ities of wireless LANs, su
h as 
arrier sensing or 
ontention, so that their results
an be applied in other radio networks as well.In 
ontrast to this, [5℄ investigated the WLAN planning problem a

ountingfor the e�e
t of 
ontention introdu
ed by the CSMA/CA me
hanism. Theygive 0-1 hyperboli
 formulations and quadrati
 formulations for the problem ofmaximizing overall 
apa
ity with and without 
overing 
onstraints and for max-imizing fairness with respe
t to 
apa
ity. They only 
onsider a single-
hannels
enario, but 
laim that their proposed formulation 
an be easily generalized tomultiple 
hannels.[19℄ formulated a 
hannel assignment problem for CSMA/CA-based net-works, 
onsidering the 
umulative 
o-
hannel interferen
e from neighboring APsleading to a busy 
arrier sense signal. Their obje
tive is to minimize the max-imum 
hannel utilization experien
ed by an AP. The authors then proved thisproblem to be NP-
omplete and proposed a heuristi
, whi
h they applied totwo s
enarios with known optimal frequen
y assignments (hexagonally shapedlatti
e of 
ells) and uniform, �xed-power se
torized antennas.[17℄ provided an integer linear programming formulation, whi
h determines apla
ement of APs and a 
hannel assignment that maximizes 
hannel utilizationin a single step. However in their formulation, APs within interferen
e rangehave to always operate on di�erent 
hannels, whi
h makes the problem unsolv-able for s
enarios with many nearby APs and only few available non-overlapping
hannels.Finally, [20℄ proposed a method for joint AP pla
ement and 
hannel assign-ment whi
h permits 
o-
hannel overlapping and aims at maximizing throughputand fairness among stations. 3



As we are interested in analyzing already deployed wireless LANs from dif-ferent domains, we do not 
onsider AP pla
ement and we also do not expe
tto be able to in�uen
e the hardware 
on�guration of APs. Instead, we fo
uson the dynami
ally adjustable aspe
ts whi
h a�e
t 
ontention: transmissionpower, 
hannel sele
tion and assignments of STAs to APs. Our obje
tive is tominimize 
ontention experien
ed by APs and STAs by taking into a

ount bothdire
t 
ontention via CSMA/CA's physi
al 
arrier sense as well as the virtual
arrier sense of the RTS/CTS extension. Note that as a result of transmissionpower assignment an AP 
an be swit
hed o�, so that we also have some formof sele
tion from 
andidate sites, but it is not an obje
tive to keep the numberof a
tive sites small. Finally, we do not make any assumptions about the size,shape or overlap of 
o-
hannel radio 
ells, as we expe
t all kinds of heterogeneityto o

ur in our s
enario under study and typi
ally not the traditional hexagonallatti
e.There has been some work on on-line radio resour
e management for wirelessLANs whi
h is 
omplementary to our work in that our global optimizationalgorithm 
an be used as a ben
hmark for determining the e�e
tiveness of theproposed s
hemes in redu
ing 
ontention inside a domain or between domains:[10℄ des
ribed an ar
hite
ture in whi
h intelligent swit
hes 
ontrol APs withina single administrative domain to provide dynami
 
hannel assignment, dynami
transmit power 
ontrol and load sharing.[24℄ proposed an agent-based radio resour
e management system in whi
hthe APs belonging to the same network 
ooperate with ea
h other to providefull 
overage for present STAs and perform load balan
ing between them.[21℄ suggest the use of a radio resour
e broker that monitors tra�
 in the
onne
ted wireless LANs of di�erent domains as well as the interferen
e betweenthese domains and then 
ompensates networks with high tra�
 but mu
h inter-feren
e from other networks by assigning them more 
hannels and transmissionpower, whi
h it takes away from other domains. While being the most 
loselyrelated work to ours, this proposal relies on a 
entral 
omponent assuming arather low number of di�erent domains, i.e. it is not suited for a wireless 
om-munity network.1.3 Contributions and Paper Stru
tureIn our paper we pursue two questions: How mu
h and to whi
h level 
on-tention in an unplanned network of wireless APs 
an be redu
ed by introdu
ing
oordination between these APs and how 
lose a distributed algorithm for self-
oordination 
an get to this level. To this end we:
• propose mathemati
al programs for jointly determining the AP�STA as-so
iations as well as the transmission power and 
hannel assignment pa-rameters for all nodes of a CSMA/CA-based wireless LAN s
enario thatminimizes the amount of 
ontention in the system both for operation withand without RTS/CTS extension (Se
tions 2.1 and 2.2, respe
tively),4



• present two theoreti
al lower bounds for the minimal 
ontention problemthat exploit di�erent levels of knowledge about the s
enario (Se
tion 3.1),
• introdu
e a geneti
 algorithm whi
h is spe
i�
ally tuned for �nding near-optimal solutions also in larger s
earios (Se
tion 3.3),
• des
ribe a distributed algorithm and proto
ol that allows APs to re
on�g-ure the network within their neighborhood in order to redu
e 
ontention(Se
tion 4), and
• present some of our experimental results (Se
tion 5).Finally, we 
on
lude our paper with a short summary and an outlook.2 Modeling the Minimal Contention ProblemIn this se
tion we provide mathemati
al programming formulations of the basi
problem we are addressing: the minimization of 
ontention in CSMA/CA-basedwireless networks. We distinguish two 
ases: a simpler model under the assump-tion of low tra�
 load and a more sophisti
ated model under high tra�
 loadwhi
h integrates the RTS/CTS me
hanism.2.1 Networks with Low Tra�
 LoadsBefore a wireless station using CSMA/CA 
an start to transmit data, it needsto sense an idle 
hannel for a spe
i�ed amount of time (Distributed Inter FrameSpa
ing or DIFS in 802.11). Whether a 
hannel is idle or not is determined by aClear Channel Assessment (CCA) fun
tion of the physi
al layer. Depending onthe implementation and the 
hosen operation mode, the CCA would for exampleindi
ate a busy 
hannel when a 
ertain energy dete
tion threshold is ex
eeded(CCA Mode 1), when a valid signal from another station is dete
ted (CCA Mode4), or a 
ombination of both (CCA Mode 5)[25℄. In this paper we assume thatphysi
al 
arrier sense is solely based on dete
tion of valid signals from otherstations. The reason for this is that the default energy dete
tion threshold isusually mu
h higher than the signal level at whi
h transmissions from a singlestations 
an be dete
ted. Only in the rare 
ase that a station re
eives simulta-neous transmissions from multiple 
o-
hannel stations (i.e. when these stationssense an idle 
hannel both with physi
al and virtual 
arrier sense) would CCAMode 1 dete
t a busy medium when CCA Mode 4 does not. Furthermore, theenergy dete
tion threshold is usually only adjustable in higher-pri
ed equipment.The signal strength above whi
h a station is able to dete
t valid transmissionsfrom other stations is typi
ally mu
h lower than the signal strength requiredfor re
eiving transmissions at a desired data rate. Thus, a station whi
h isfarther away from a sending station than the intended re
eiver might still berestrained from sending to any other station, even though its transmission mightbe unproblemati
. 5



As a �rst step, we will model a s
enario with wireless a

ess points andstations that use only simple CSMA/CA. Later we will extend the model forRTS/CTS operation.Let i denote a wireless node with i = 1, . . . , I + K, where I is the numberof a

ess points (APs) in the s
enario and K the number of stations (STAs).Nodes shall be ordered su
h that i = 1, . . . , I for APs and i = I + 1, . . . , I + Kfor STAs. Ea
h node i 
an transmit with a transmission power xi ∈ R between
0 and a node-spe
i�
 maximum allowed power si. On the way from a sender ito a re
eiver m, a signal experien
es a path loss given by pim

1. A re
eiving noderequires a minimum signal strength rm to be able to de
ode a frame transmittedat the desired data rate 
orre
tly. If a node i re
eives a signal from another nodewith a power above or equal to li, its CCA will report the 
hannel as busy.APs and their asso
iated STAs form a basi
 servi
e set (BSS). A BSS 
anoperate on one of J di�erent non-overlapping radio 
hannels, j = 1, . . . , J . yij isa binary variable indi
ating whether node i 
urrently uses 
hannel j or not. Wefurther de�ne a binary variable fim indi
ating whether a node i (whi
h mustbe a STA) is 
urrently asso
iated to node m (an AP) and a helper variable
e

pc
im whi
h indi
ates whether node i is a potential 
ontender of node m. Withpotential 
ontender we mean that node m is 
lose enough to i that it 
an dete
t

i's 
arrier if both are operating on the same 
hannel. In summary, our �rstmodel takes as input
• si: the maximum transmission power of node i

si ∈ R, i = 1, . . . , I + K

• ri: the minimum re
eption power requirement of node i

ri ∈ R, i = 1, . . . , I + K

• li: the minimum signal power for node i to dete
t the 
hannel as busy
li ∈ R, i = 1, . . . , I + K

• pim: the signal propagation loss from node i to node m

pi ∈ R, i = 1, . . . , I + K, m = 1, . . . , I + Kand the following de
ision variables:
• xi: the 
urrent transmission power of node i,

xi ∈ R, i = 1, . . . , I + K

• yij =

{

1 i� node i is set to 
hannel j

0 otherwise
yij ∈ {0, 1} , i = 1, . . . , I + K, j = 1, . . . , J

• fim =

{

1 i� AP i is responsible for STA m

0 otherwise
fim ∈ {0, 1} , i = 1, . . . , I, m = I + 1, . . . , I + K1Note that we assume dBm as the unit of signal strength. Due to its logarithmi
 s
ale,losses (negative values) in dB are a
tually added to the transmission power to 
al
ulate there
eived signal strength. 6



• e
pc
im =

{

1 i� node i is potential 
ontender of node m

0 otherwise
e

pc
im ∈ {0, 1} , i = 1, . . . , I + K, m = 1, . . . , I + KA valid solution of our optimization problem needs to satisfy several 
onstraints,whi
h we will dis
uss in detail.First of all, ea
h node's transmission power must be between zero and thenode-spe
i�
 maximum:

0 ≤ xi ≤ si, i = 1, . . . , I + K (1)All STAs have to re
eive their minimum power requirement from the AP theyare asso
iated to:
xi + pim ≥ fimrm, i = 1, . . . , I, m = I + 1, . . . , I + K (2)Likewise, all APs have to re
eive their minimum power requirement from theSTAs in their BSS:
xm + pmi ≥ fimri, i = 1, . . . , I, m = I + 1, . . . , I + K (3)All STAs are asso
iated to exa
tly one AP:

I
∑

i=1

fim = 1, m = I + 1, . . . , I + K (4)Ea
h AP and STA uses exa
tly one 
hannel:
J

∑

j=1

yij = 1, i = 1, . . . , I + K (5)All STAs use the 
hannel of the AP whi
h they are asso
iated to:
yij − ymj − (1 − fim) ≤ 0, (6)

i = 1, . . . , I, m = I + 1, . . . , I + K, J = 1, . . . , JFinally, we for
e e
pc
im to be 1 if nodes i and m are so 
lose to ea
h other, that

m dete
ts the 
hannel busy if i 
urrently transmits on the same 
hannel (for
i 6= m, of 
ourse, sin
e nodes 
annot 
ontend for a

ess with themselves):

xi + pim ≤ lm + e
pc
imMim, Mim = si + pim − lm (7)

i = 1, . . . I + K, m = 1, . . . , I + K ∧ i 6= m

e
pc
ii = 0, i = 1, . . . , I + K (8)7



Considering that a node 
an only 
ontend for a

ess with another node whenboth are on the same 
hannel, we are able to 
al
ulate am, the number of nodes
ontending for a

ess with node m:
am =

I+K
∑

i=1

e
pc
im





J
∑

j=1

yijymj



 (9)Our obje
tive is then to minimize the amount of 
ontention experien
ed by thenodes in the system:
min

I+K
∑

m=1

am = min
I+K
∑

m=1

I+K
∑

i=1

e
pc
im





J
∑

j=1

yijymj



 (10)This optimization problem requires I2 + K2 + 3IK + (J + 1) (I + K) de
isionvariables and I2+K2+(J + 4) IK +2I+3K 
onstraints and is unfortunately ofmultipli
ative form, whi
h makes it still di�
ult to solve. In se
tion 3.2 we willshow how to make this problem solvable by transforming it into an equivalentlinear problem.2.2 Networks with High Tra�
 LoadsWhen tra�
 in the wireless network in
reases, so does the number of 
ollisions oftransmission attempts. In wireless networks with high tra�
 loads, a me
hanism
alled RTS/CTS, �rst proposed as part of the MACA proto
ol [13℄, is usually employed toin
rease utilization.In CSMA/CA with RTS/CTS, when a node i wants to transmit data toa node m, it �rst sends a small Request To Send (RTS) frame 
ontaining there
eiver address and the duration of the transmission in
luding the �nal ACK.Upon re
eiving the RTS frame, m reponds with a Clear To Send (CTS) frame,whi
h 
ontains the remaining transmission duration as well. All other nodes(APs and STAs) whi
h 
an hear either the RTS or the CTS store the time duringwhi
h the medium is expe
ted to be busy in their lo
al network allo
ation ve
tor(NAV) timer and then defer a

ess until the transmission between i and m isover. Sin
e the spe
i�ed pro
edure of deferring a

ess is similar to the physi
al
arrier sense des
ribed in the previous se
tion, this me
hanism is 
alled virtual
arrier sense.A
tivating RTS/CTS has the advantage, that 
ollisions 
an in general onlyo

ur on RTS transmissions. As RTS frames are 
omparatively small, the 
ol-lision probability is signi�
antly redu
ed. Furthermore RTS/CTS solves thehidden terminal problem, where two stations that 
annot hear ea
h other try tosend data to the same a

ess point simultaneously. As a drawba
k, more sta-tions experien
e 
ontention indire
tly, as they are within 
arrier sense distan
eof a node re
eiving a transmission. 8



We are now going to extend the previous model for the 
ase of CSMA/CAnetworks using RTS/CTS. This is simple as the previous model already a

ountsfor 
al
ulating the number of dire
t 
ontenders for a given node m. There, adire
t 
ontender was de�ned as a node whi
h, when it transmits, 
auses m todefer transmissions due to a positive physi
al 
arrier sense indi
ation, whi
his equivalent to the e�e
t of the virtual 
arrier sense after re
eption of a RTSframe. All we have to do further is to take into a

ount those 
ontenders i, whi
hinterfere with m's transmissions by being able to send RTS frames to at leastone node k whose CTS answers m 
an hear. We 
all i an indire
t 
ontender of
m, if it is not a dire
t 
ontender at the same time, so that the sets of dire
t andindire
t 
ontenders for a given node are disjoint. To indi
ate that a node is notpotential 
ontender of another node, we need to de�ne a new helper de
isionvariable e

npc
im :

xi + pim ≥ lm − e
npc
im Mim, Mim = lm − pim (11)

i = 1, . . . I + K, m = 1, . . . , I + K ∧ i 6= m

e
npc
ii = 0, i = 1, . . . , I + K (12)We 
an now extend amwith the number of indire
t 
ontenders, but have to takeinto 
onsideration that APs only send to STAs but not to other APs and vi
eversa. Furthermore, an AP that does not have STAs assigned should not be
ounted as an indire
t 
ontender. On the other hand, if it has STAs, it shouldbe 
ounted exa
tly on
e, no matter how many STAs are assigned to it. This iswhy we introdu
e the step fun
tion σ (x). Our obje
tive fun
tion thus be
omes:

min

I+K
∑

m=1

am,

am =

I+K
∑

i=1

e
pc
im





J
∑

j=1

yijymj





+

I
∑

i=1

σ





I+K
∑

k=I+1

fike
pc
ike

pc
kme

npc
im





J
∑

j=1

yijykjymj









+

I+K
∑

k=I+1

I
∑

i=1

fike
pc
kie

pc
ime

npc
km





J
∑

j=1

yijykjymj



 (13)
σ (x) =

{

1 x > 0
0 x ≤ 0This model extension adds (I + K)2 de
ision variables and (I + K)2 
onstraints.Note that e

pc
ik and e

pc
ki always have the same value as fik, sin
e a STA and theAP it is asso
iated to need to be able to hear ea
h other. We 
an thereforesimply omit these variables in the obje
tive fun
tion.9



3 Lower Bounds for the MinimalContention Problem3.1 Theoreti
al Lower BoundsIn this se
tion, we derive theoreti
al lower bounds on the minimum 
ontention.The bounds are based on optimisti
 assumptions about possible 
ontention be-tween APs and STAs, i.e. a best-
ase analysis for a given number of STAs andAPs is performed. In the following two bounds are presented: one independentof the radio range of APs and STAs and then a (better) one whi
h takes intoa

ount the radio range of APs and STAs.3.1.1 Radio-Range Independent Lower BoundAs above, let I denote the number of APs and K the number of STAs. Wemake the following two optimisti
 assumptions:1. APs (and their asso
iated STAs) do not 
ontend with APs (and STAs) ofother basi
 servi
e sets.2. STAs assigned to a given AP do not 
ontend with ea
h other.The �rst assumption requires APs (and their asso
iated STAs) to either bespa
ed far away enough from ea
h other or to use di�erent 
hannels. The se
ondassumption is optimisti
 in the spa
ing between STAs that are asso
iated to thesame AP.Let ni denote the number of STAs asso
iated to AP i. Under these assump-tions the overall 
ontention 
an be 
al
ulated as follows:
C =

I
∑

i=1

(2ni + ni(ni − 1)) =

I
∑

i=1

n2
i + niThis is due to the fa
t that an AP is in dire
t 
ontention with ea
h of itsasso
iated STAs (and the other way around) and that ea
h STA is in indire
t
ontention with ea
h other STA asso
iated to the same AP. This 
ontention isminimal if the STAs are as uniformly distributed over the APs as possible:Proposition 1: C is minimal if ∀i, j ni + 1 ≥ nj .Proof: Assume C is minimal for a given assignment of STAs to APs but

∃i0, j0 with ni0 + 1 < nj0 . That means ∃k ≥ 2 with ni0 + k = nj0 . Hen
e, with
A =

∑I

i=1,i6=i0,i6=j0
n2

i + ni

C = A + n2
i0

+ (ni0 + k)
2

+ ni0 + ni0 + k

= A + 2n2
i0

+ 2ni0k + k2 + 2ni0 + k

> A + 2n2
i0

+ 2ni0k + k2 − 2(k − 1) + 2ni0 + k

= A + (ni0 + 1)
2

+ (nj0 − 1)
2

+ (ni0 + 1) + (nj0 − 1)10



This 
ontradi
ts the assumption that C is minimal for this distribution, as it
an be improved by reassigning STAs to APs and thus the proposition must be
orre
t.We therefore make the further optimisti
 assumption, that the APs a
hievea perfe
t load balan
ing with respe
t to their assigned STAs (modulo 1) to �nda lower bound on 
ontention for a given number of APs and STAs.That means the lower bound is given by
C = K + m(n + 1) + (I − m)n + mn(n + 1) + (I − m)n(n − 1) (14)where n = K div I is the number of STAs per AP (possibly plus one) and

m = k mod I is the number of APs with one STA more than others.Note that this bound makes very optimisti
 assumptions on the spatial dis-tribution of nodes and assumes enough 
hannels to prevent 
ontention betweenbasi
 servi
e sets. Hen
e, in some a
tual s
enarios it 
an be a very loose lowerbound.3.1.2 Radio-Range Dependent Lower BoundFor this se
ond bound, some more information besides the number of STAs andAPs is required. In parti
ular, now also the feasible asso
iations of STAs toAPs due to radio rea
hability is taken into a

ount. If we have this informationwe 
an 
apture situations where a perfe
t load balan
ing is not possible andin
rease the lower bound a

ordingly.Let us de�ne a radio range 
onstrained load balan
ed assignment of STA toAPs as follows:De�nition: An assignment of STAs to APs is 
alled radio range 
onstrainedload balan
ed i� for all AP i0 and i1 with ni0 > ni1 + 1 it applies that if a STA
j ∈ CSTA

i0
∧ j ∈ CSTA

i1
then j must be assigned to AP i1.Equipped with this de�nition the following proposition parallels Proposition1 from the pre
eding se
tion:Proposition 2: The minimal 
ontention under optimisti
 assumptions isa
hieved by the radio range 
onstrained load balan
ed assignment of STAs toAPs.Proof: The proof is a straightforward extension of the one for Proposition 1taking into a

ount the further restri
tions due to radio range 
onstraints.An algorithm to 
ompute the radio range 
onstrained load balan
ed assign-ment of STAs to APs, whi
h hen
e a
hieves the lower bound on 
ontention(under the optimisti
 assumptions of no inter-BSS 
ontention and no intra-BSS
ontention between STAs), is given as Algorithm 1.3.2 Exa
t Lower BoundsThe problem presented in Se
tion 2.2 has a polynominal stru
ture, as the termsof the obje
tive fun
tion are produ
ts of three and more variables. The binarynature of variables allows us to adopt the te
hnique from [7℄ to derive an equiv-alent linear model at the 
ost of additional de
ision variables and 
onstraints.11



Algorithm 1Computation of Radio Range Constrained Load Balan
ingParameters
I: number of APs
K: number of STAs
CSTA

i : set of STAs whi
h 
an be 
overed by AP i at its maximum signalstrength, i.e.
CSTA

i = {m ∈ {I + 1, ..., I + K} : si + pim ≥ rm}
CAP

m : set of APs of whi
h ea
h 
overs STA m at its maximum signal strength,i.e.
CAP

m = {i ∈ {1, ..., I} : si + pim ≥ rm}Variables
MSTA: set of STAs
MAP , MEXCL: sets of APs
ni: number of STAs asso
iated to AP iAlgorithm
MSTA = {I + 1, ..., I + K} ;
MEXCL = ∅;FOR i = 1 TO I: ni = 0;WHILE MSTA 6= ∅ DO

MAP = {1, ..., I} − MEXCL;WHILE MSTA 6= ∅ ∧ MAP 6= ∅ DO
i0 = arg mini∈MAP

∣

∣CSTA
i

∣

∣ ;IF ∣

∣CSTA
i0

∣

∣ 6= 0 THEN
m0 = arg minm∈CSTA

i0

∣

∣CAP
m

∣

∣ ;

ni0 = ni0 + 1;
MSTA = MSTA \ {m0} ;FOR i = 1 TO I: CSTA

i = CSTA
i \ {m0}ELSE

MEXCL = MEXCL ∪ {i0} ;
MAP = MAP \ {i0} ;

12



For every produ
t of binary variables we introdu
e a new variable and substituteit with a produ
t whi
h is then transformed to a new 
onstraint.We substitute edc
im := e

pc
imyijymj , eicAS

im := fike
pc
kme

npc
im yijykjymj , and eicSA

im :=
fike

pc
ime

npc
km yijykjymj by adding the following variables:

• edc
im =

{

1 i� node i is dire
t 
ontender of node m

0 otherwise
edc

im ∈ {0, 1} , i = 1, . . . , I + K, m = 1, . . . , I + K

• eicAS
im =

{

1 i� AP i is indire
t 
ontender of node m

0 otherwise
eicAS

im ∈ {0, 1} , i = 1, . . . , I, m = 1, . . . , I + K

• eicSA
im =

{

1 i� STA i is indire
t 
ontender of node m

0 otherwise
eicSA

im ∈ {0, 1} , i = I + 1, . . . , I + K, m = 1, . . . , I + KThe produ
ts are then added as new 
onstraints:For
e edc
im to be 1 if node i is potential 
ontender of m and both use the same
hannel

e
pc
im + yij + ymj − edc

im ≤ 2, (15)
i = 1, . . . , I + K, m = 1, . . . , I + K, j = 1, . . . , JFor
e eicAS

im to be 1 if AP i sends an RTS to its asso
iated STA k and node m
an hear k's CTS, but not the original RTS
fik + e

pc
km + e

npc
im + yij + ykj + ymj − eicAS

im ≤ 5, (16)
i = 1, . . . , I, k = I + 1, . . . , I + K,

m = 1, . . . , I + K, j = 1, . . . , JFor
e eicSA
im to be 1 if STA i sends RTS to its AP k and node m 
an hear k'sCTS, but not the original RTS:

fki + e
pc
km + e

npc
im + yij + ykj + ymj − eicSA

im ≤ 5, (17)
i = I + 1, . . . , I + K, k = 1, . . . , I,

m = 1, . . . , I + K, j = 1, . . . , JFinally we obtain our new linear obje
tive fun
tion:
min

I+K
∑

m=1

am,

am =
I+K
∑

i=1

edc
im +

I
∑

i=1

eicAS
im +

I+K
∑

i=I+1

eicSA
im13



This new formulation 
an now be solved with any mixed integer program solver.For our evaluations, we have used the open-sour
e software lp_solve[1℄. Dur-ing our initial testing we found out that we 
ould vastly improve the time thatlp_solve takes to �nd the optimal solution, by giving it a hint to use all avail-able 
hannels. We did this by adding the following additional 
onstraints:
I

∑

i=1

yij ≥ 1, j = 1, . . . , J (18)Note that this hint helped lp_solve to more qui
kly redu
e the sear
h spa
eby enabling a better bran
hing, although it might not have the same e�e
t withother solvers that follow a di�erent bran
h and bound strategy.3.3 Heuristi
s for Lower BoundsAs we have only been able to solve small problem instan
es exa
tly with lp_solve,we de
ided to implement a geneti
 algorithm (GA) that is spe
ially tailored toour optimization models and allows us to study large problem instan
es as well.Our GA repeats the following steps iteratively until the population has 
on-verged:1. Generate a new generation of individuals by re
ombining randomly 
hosenpairs of parent individuals.2. Mutate ea
h gene of an individual with a probability of pmutation. Trans-mission powers xi ∈ R are mutated by adding a random value drawn froma Gaussian distribution with mean 0 and a standard deviation of σi to it,where σi is adapted during evolution. Radio 
hannels and AP asso
iationsare mutated by randomly 
hoosing a new value from the respe
tive set ofallowed values.3. Finally, we use a tournament sele
tion strategy, where randomly 
hosenpairs of individuals taken from both parent and 
hild generation 
ompetewith ea
h other and the �tter individual of ea
h pair (i.e. one with thelower 
ontention) survives until the next round.Up to now, the algorithm is pretty mu
h standard. However, we have hadgood experien
e with equipping our GA with a spe
ial 
rossover operator anda healing strategy.A

ording to the building-blo
k hypothesis [8℄, one should arrange the geneson an individual's 
hromosome in su
h a way that those genes that are 
orrelatedin their in�uen
e on an individual's �tness should be pla
ed 
lose to ea
h other,so that it is less likely that the 
ross-over operator would tear them apart duringre
ombination. We have therefore arranged genes representing a node's trans-mission power, 
hannel sele
tion and AP assignment on a 2-dimensional planeinstead of the traditional 1-dimensional string, and we have done so in su
h a14



Available Channels1 2 3 4ILB 12 12 12 12DLB all 12 12 12 12OPT 1 42 20 14 122 28 12 12 123 17 12 12 124 34 14 12 125 19 12 12 126 33 15 12 12GA 1 42.0 20.0 14.0 12.02 28.4 12.0 12.0 12.03 17.0 12.4 12.0 12.04 34.8 14.0 12.0 12.05 19.0 13.6 12.4 12.06 33.0 15.0 12.4 12.0MC 1 58.8 40.0 24.2 27.62 44.8 28.6 23.2 26.83 67.0 46.4 24.2 23.64 62.4 29.6 35.8 24.25 62.2 30.4 28.0 23.46 45.4 29.0 23.4 22.2Table 1: Minimum 
ontention for varying number of available 
hannels in 6di�erent s
enarios of 4 APs and 5 STAs ea
h.way that the distan
e relationships between nodes are preserved on the 
hro-mosome. Our 
rossover operator then 
hooses a random straight 
ut throughthe 
hromosome plane, re
ombining the 
ut-o� 
hromosome fragments of the
hosen pair of individuals.Furthermore, in order to improve the 
han
es of obtaining a large amountof valid solutions within our population, we apply a healing strategy afterea
h iteration. The healing pro
ess involves two phases. First, it sear
hesfor nodes whose minimum signal strength requirements are not met and adaptsthe sender's transmitting power to the required value, if it does not ex
eed themaximum allowed power. If this is not su

essful, the healing pro
ess tries to�nd a better AP to asso
iate to for all STAs in turn.In preparatory experiments we have veri�ed that the geneti
 algorithm doesindeed �nd near-optimal or even the optimal solutions. The experiments wereperformed on 6 di�erent s
enarios of 4 APs and 5 STAs ea
h. APs have beenpla
ed in lo
ations drawn from a bivariate normal distribution around the 
enterof a 1km x 1km simulation area, with the 
onstraints that they are pla
ed not
loser than 20m and not farther than 150m apart from the next AP. For theremaining parameters, please refer to the later se
tion on our main experiments15



and results (Se
tion 5.1).In Table 1 we have listed the minimum 
ontention for all 6 s
enarios, as
al
ulated by the geneti
 algorithm (GA) for 1 to 4 available 
hannels, averagedover 5 independent simulation runs ea
h. The table also shows the minimum
ontention values as 
al
ulated by the solver (OPT), the values for the radiorange independent and radio range dependent lower bounds (ILB and DLB,respe
tively) and �nally the average results from 5 runs of a single, randomlygenerated solution (Monte Carlo (MC)), with one appli
ation of the healingpro
ess to generate valid solutions.As the results of our experiments show, the theoreti
al lower bound 
an berea
hed in all 6 s
enarios if there are 4 available 
hannels. The fa
t that the lowerbound has been rea
hed means that all but one AP have one STA assigned, theother has 2 STAs. Note that this well-balan
ed 
ase 
an usually not be rea
hedin larger s
enarios. As the number of available 
hannels de
reases, it is notpossible to avoid 
ontention between basi
 servi
e sets anymore in some of thes
enarios. Note that in most 
ases, the GA was able to �nd the optimal solution.4 Distributed AlgorithmIn this se
tion we des
ribe our distributed algorithm for redu
ing the 
ontentionin a wireless a

ess network. It 
onsists of �ve building blo
ks:
• Data dissemination, in whi
h ea
h AP gains knowledge about other APswithin its horizon as well as the STAs whi
h these APs are aware of andare able to 
over at the required signal strength.
• Lo
al negotiation, in whi
h an AP suggests a lo
al re
on�guration of thenetwork to all APs within its horizon, waits for their feedba
k on how thisre
on�guration would a�e
t network performan
e in their vi
inity andthen de
ides either to 
ommit or abandon this re
on�guration.
• A �tness fun
tion with whi
h to evaluate the 
urrent state of the networkwithin an APs horizon and the e�e
t of a proposed re
on�guration.
• An algorithm used to �nd lo
al re
on�gurations.
• A me
hanism to determine, whi
h APs are allowed to propose lo
al re-
on�gurations and when.An AP's horizon de�nes whi
h other APs and STAs in its geographi
al vi
inityit knows and 
onsiders in �nding improvements. When 
hosing the extent of thehorizon, one has to make the typi
al tradeo� between the 
han
es for �ndingthe globally optimal 
on�guration and the 
omputational e�ort and signalingoverhead. In our experiments we have de�ned the horizon of an AP i as the setof all APs that are either within 
ontention range of AP i themselves or are ableto serve a STA that is in 
ontention range of i. Adhering to the notation fromprevious se
tions, the horizon Hi of AP i 
an be mathemati
ally formulated as:16



Hi = {m ∈ {1, ..., I} | si ∗ pim ≥ lm

∨ (∃k ∈ {I + 1, ..., I + K} :

si ∗ pik ≥ lk ∧ sm ∗ pik ≥ rk)}4.1 Data DisseminationThe obje
tive of the �rst building blo
k of our algorithm is to keep APs up-dated about other APs within their horizon and all STAs whose minimum signalstrength requirement 
an be met by at least one of the APs within the horizon.APs initially �nd out about their neighbors by s
anning for periodi
 bea
onsignals on all available 
hannels. Upon re
eiving a bea
on from a previouslyunknown neighbor, the AP sends out a WELCOMEmessage to its new neighbor,both on the wireless link and on the wired ba
kbone network. This assumes thatthe IP address of the new neighbor is known. The most simple solution is to letea
h AP in
lude its IP address as an additional Management Frame InformationElement[26℄ in its broad
asted bea
ons. As lega
y stations ignore unknowninformation elements, this solution is ba
kward 
ompatible. Another solutionwould be to use the Candidate A

ess Router Dis
overy (CARD) proto
ol[6℄,whi
h is an experimental proto
ol de�ned by the IETF Seamoby working group.Both the WELCOME message and the reply to it (WELCOME_ACK) 
on-tain information about the sending AP and about all STAs whi
h the senderis 
urrently aware of and whose minimum signal strength requirements it 
anmeet. By sending these messages over both the wireless link and the ba
kbone,we 
an further gain information about whether the wireless link is asymmetri
or not, i.e. if one a

ess point is able to hear the other but not vi
e versa.Furthermore, all a
tive APs periodi
ally send UPDATE messages to all APswithin their horizon 
ontaining their 
urrent STA information list. This in-formation has an expli
it expiration time, so when an AP does not re
eiveUPDATE messages from a neighbor for a 
ertain length of time, it will assumeit has dea
tivated without signing o�. UPDATE messages are always sent viathe wired ba
kbone, so that this soft-state approa
h does not 
onsume valuablewireless resour
es.We also 
onsider the 
ase that two APs that 
annot hear ea
h other dire
tlynevertheless produ
e 
ontention in ea
h other's BSS. This may happen when anSTA is lo
ated in between the AP it is asso
iated to and another AP that iswithin 
ontention range. The STA may then notify its own AP of the 
ontendingAP's presen
e so that both APs may 
onta
t ea
h other using the me
hanismdes
ribed above.4.2 Lo
al NegotiationBased on its knowledge about APs and STAs within its horizon, an AP may runa lo
al optimization algorithm to sear
h for better 
on�gurations for itself andits neighboring APs. As in the previous se
tion we use the amount of 
ontention17



present within the AP's horizon as the fun
tion to minimize, but di�erent �tnessfun
tion may be used as well. If an AP �nds a 
on�guration that will improve
ontention within its own horizon by a 
ertain positive delta, it suggests thenew 
on�guration to its neighbors by sending them an OFFER message withthe new 
on�guration.Upon re
eiving an OFFER, every neighbor determines the e�e
t of the 
on-�guration 
hange would have on their part of the network. Note that the setsof nodes within the horizons of the APs sending the OFFER and re
eivingthe o�er will usually not be identi
al, although the interse
tion set should usu-ally be large. All re
eivers of an OFFER then answer with an OFFER_REPLYmessage 
ontaining the delta in 
ontention that would result from a
tually 
om-mitting the 
on�guration 
hange. When the AP that initiated negotiations hasre
eived replies from all its neighbors, it 
al
ulates the sum of all delta valuesin
luding its own. If the net e�e
t of the re
on�guration proposal is positive,the initiating AP sends a COMMIT message to all neighbors, who then updatethe lo
al knowledge about their neighborhood and possibly 
hange the radio
hannel they operate on or instru
t individual STAs to reasso
iate with a di�er-ent AP. In the 
urrent version of our algorithm, an AP sends a message to ea
hof its asso
iated STAs to instru
t it to 
hange in 
hannels a

ording to the in-tended new 
on�guration. Alternatively, all asso
iated STAs 
ould be informedby letting APs in
lude a Channel Swit
h Announ
ement element (de�ned in the802.11h standard) in their management frames.There are three 
ases in whi
h the initiating AP will send a WITHDRAWmessage to its neighbors in order to 
an
el a re
on�guration attempt. The�rst 
ase is that the initiator 
al
ulates a negative or zero net e�e
t of there
on�guration proposal. Se
ondly, it may happen that one of the re
eiversof an OFFER message is already pro
essing a re
on�guration proposal by adi�erent AP whi
h has not been 
ommitted or reje
ted yet. It then refuses thenew OFFER by answering with a BUSY message. Finally, if at least one of theneighbors does not respond to the OFFER within a 
ertain time interval, theinitiator will assume the message was lost or the re
eiver has dea
tivated.4.3 Re
on�guration AlgorithmsIn order to �nd a re
on�guration that will yield a lower amount of 
ontention,an AP applies an optimization algorithm to the set of APs and STAs within itshorizon, in
luding itself. We have experimented both with our problem-spe
i�
geneti
 algorithm and a new greedy heuristi
 whi
h we termed �balan
e andseparate�. It works in two phases:1. In the balan
ing phase, the heuristi
 tries to distribute the number of asso-
iated STAs to an AP as evenly as possible using the algorithm des
ribedin Se
tion 3.1.2. As mentioned in the dis
ussion of the balan
ing algorithm, it optimisti-
ally assumes that there is no 
ontention between BSSes, either be
ause18



they are spa
ed su�
iently far apart from ea
h other or operate on di�er-ent 
hannels. In the separation phase the heuristi
 therefore tries to assign
hannels in su
h a way that the two BSSes with the highest amount ofinter-BSS 
ontention operate on di�erent 
hannels and that the remain-ing BSSes are assigned 
hannels in the order of de
reasing inter-BSS 
on-tention. If it is unavoidable to 
hoose an already assigned 
hannel, theheuristi
 
hooses the one that will add the least amount of 
ontention tothe network.4.4 Coordination of Re
on�gurationsThe last building blo
k of our algorithm is 
on
erned with the question whenAPs attempt to �nd and propose an improved 
on�guration. We have usedboth an un
oordinated approa
h, in whi
h ea
h AP performs re
on�gurationattempts as a Poisson pro
ess. Furthermore, we have used two token-passingalgorithms, where an AP 
urrently holding a token waits for a random timeinterval before attempting to propose a re
on�guration and passing the tokenon to a randomly 
hosen neighboring AP. The two token-based approa
hes di�erin that the �rst approa
h starts with a single token that 
ir
ulates the network,while in the se
ond all APs initially hold a token. When an AP re
eives a newtoken from a neighbor while already holding one, the new token is destroyed, sothat eventually only one token remains in the network. Lost or destroyed tokens
ould be repla
ed by letting ea
h AP generate a new token at a very small rate,whi
h 
ould vary with the amount of 
ontention�and therefore the ne
essityfor a new token�within an AP's horizon. However, we have not 
onsidered the
ase of token loss and repla
ement.The rationale behind experimenting with di�erent re
on�guration 
oordina-tion approa
hes is that one 
an expe
t the global level of 
ontention in the systemto in
rease more rapidly when a high number of a

ess points 
on
urrently tryto �nd and propose re
on�gurations, as it is the 
ase with the un
oordinatedapproa
h. On the other hand, when re
on�gurations are made at di�erent lo-
ations of the network at the same time, there is a 
han
e that the e�e
t of onere
on�guration will be 
ounterprodu
tive with respe
t to another re
on�gura-tion in the long run. The token passing approa
h in
reases the probability thattwo subsequent re
on�gurations take pla
e on neighboring or at least nearbya

ess points. Finally, to start with a high number of tokens that graduallyde
reases, might be a 
ompromise between the two former approa
hes.5 Experiments and Results5.1 S
enario Generation and Simulation SetupUnless otherwise noted, all experiments were 
ondu
ted in s
enarios with 50APs and 100 STAs within a 1km by 1km simulation area. In a �rst step, 16of the APs were pla
ed to regularly 
over the simulation area. Afterwards, the19



experiment sets preparatory evaluationrepetitions 6 10simulation area 1km2 1km2# of APs / STAs 4 / 5 50 / 100
hannels 3 3
si 20 dBm 20 dBm
ri -82 dBm -82 dBm
li -84 dBm -84 dBmalgorithms OPT, GA Lo
al GA, B&Stokens n/a 0, 1, NTable 2: Parameters for Simulation Experiments.remaining APs were pla
ed uniformly over the simulation area. The lo
ationof ea
h STA was 
hosen by pi
king an AP randomly and then pla
ing the STAwithin a distan
e of 10% to 90% of the radio range of the AP, drawn from auniform distribution.We then 
al
ulated the path losses between ea
h pair of nodes based onthe empiri
al indoor propagation loss model re
ommended in ITU-R P.1238-2[22℄. The maximum transmission power si for ea
h node was set to 20dBm(or 100mW), whi
h is the maximum power allowed for IEEE 802.11b wirelessLANs in Europe. We have set li, the minimum signal strength to dete
t a busymedium, and ri, the minimum signal strength requirement of a node to -84dBmand -82dBm, respe
tively, as these are typi
al values for an Orino
o Gold IEEE802.11b adapter.Initially, all nodes in the network are ina
tive. When a simulation run isstarted, nodes are a
tivated as a Poisson pro
ess with rate 1/30 se
onds. Ana
tivated node is an AP in 60% of the 
ases, otherwise an STA. A
tivatedAPs immediately start to 
onta
t APs in their vi
inity. Upon dete
ting a newneighbor, an AP will provide it with updates on its state every 10 se
onds viathe ba
kbone. When an STA is a
tivated, it immediately starts s
anning forbea
on frames whi
h APs broad
ast every 50 se
onds. After 5 se
onds it 
he
kswhether it has already re
eived bea
ons and then either asso
iates with thenearest AP or 
ontinues s
anning. Simulations run for a duration of 10 hoursof simulation time, ea
h and every simulation run is repeated 10 times withdi�erent s
enarios.If no tokens are passed in the network, the generation of re
on�gurationattempts per AP is a Poisson pro
ess with rate 1/100 se
onds. If one or moretokens are present, the holding time of a token is exponentially distributed withmean 100s.Table 2 on
e more summarizes the most important parameters used in ourexperiments in a 
ompa
t form. For illustrative purposes, we provide a snapshotof an ongoing simulation in Figure 1. 20
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Figure 1: Snapshot of a Simulation RunLo
al GA Lo
al B&Sinitial tokens 0 1 N 0 1 Nmean 776.8 828.1 779.2 828.5 868.9 835.1std. dev. 121.8 94.1 107.1 112.5 118.5 133.8GA mean 551.0GA std. dev. 61.9MC mean 1237.9MC std. dev. 141.2Table 3: Comparison of Contention Levels A
hieved by the Distributed Algo-rithm Using GA and B&S as Lo
al Re
on�guration Algorithms.5.2 Comparison of Re
on�guration and Coordination Al-gorithmsThe obje
tive of our �rst experiment has been to �nd out how well our dis-tributed algorithm manages to redu
e the 
ontention in the network understudy. We have therefore run our algorithm on 10 di�erent wireless networks
enarios with both the geneti
 algorithm (GA) as heuristi
 for �nding lo
alre
on�guration potential as well as the balan
e-and-separate (B&S) heuristi
.In order to study the e�e
t of 
on
urrent re
on�gurations versus sequentialre
on�gurations, we also 
ombined ea
h of our three di�erent re
on�guration
oordination approa
hes with both algorithms: Un
oordinated re
on�guration(0 tokens), token-passing with 1 token, and N initial tokens for ea
h of N a

esspoints. Additionally, we have applied a run over 10,000 iterations of our geneti
algorithm and single shots of a Monte Carlo optimizer to the whole network toserve as estimates for the best and worst 
ase behaviour. The resulting average
ontention values and their standard deviation are shown in Table 3 . Figure2 additionally shows the development of the amount of 
ontention over time21
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e of B&S and GA as Lo
al Re
on�guration Algorithms
ompared with Global Minimum and Random Con�gurationfor one of the simulated s
enarios starting from the moment that all nodes area
tivated.The results show that variations of our distributed algorithm manage toexploit between 53% and 67% of the potential for redu
ing network 
ontention
ompared to what 
ould be a
hieved with global knowledge. This fa
t does notmean that all variations are equally suitable for real-world appli
ation, though.The 
omputational e�ort per sear
h for a better lo
al re
on�guration is onthe order of two magnitudes higher for the geneti
 algorithm than for B&S,while only a
hieving slightly better results. Furthermore, the stability of the
ontention levels is not the same between the di�erent variations as 
an be seenin Figure 3 whi
h is a 
lose-up of the previous �gure.To evaluate the stability of the di�erent variations of the distributed algo-rithm more thoroughly, we removed the initial transient phase by dis
arding the�rst 10,000 se
onds of global 
ontention samples. Afterwards we 
omputed thestandard deviation of the in
rement pro
ess for ea
h of the 
ontention time se-ries as a measure of stability, the lower the standard deviation of the in
rementpro
ess the more stable the algorithm performs in steady state. Table 4 showsthe standard deviation for 10 di�erent s
enarios for the two di�erent re
on�gu-ration algorithms GA and B&S, both of them using the N token 
oordinations
heme (as it is the most stable of the 
oordination s
hemes and thus providesa lower bound on the di�eren
e in stability for the re
on�guration algorithms).Using this data to perform a sign test, we 
an show that with a probability of99% the B&S algorithm a
hieves a 50% lower standard deviation than the GA,whi
h of 
ourse means that B&S performs 
onsiderably more stable than theGA.Another important aspe
t in judging the di�erent variants of our distributedalgorithm is the frequen
y in whi
h stations are reassigned to di�erent a

ess22
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Local B&S Local GAFigure 3: Stability of B&S and GA as Lo
al Re
on�guration Algorithms OverTime
S
enario # GA B&S1 0.374 0.1262 0.523 1.4433 0.785 0.1414 0.460 0.2415 0.755 0.1526 0.515 0.3087 0.799 0.2008 1.130 0.0009 0.573 0.21210 0.354 0.000Table 4: Stability of Lo
al GA and B&S � Standard deviations of in
rementpro
ess in steady state
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B&S (N Token)Figure 4: Rate of Station Reasso
iations over Time for Di�errent Variants ofthe Distributed Algorithmpoints. A high reasso
iation rate does not only result in high signalling traf-�
 on the wireless link but also leads to serious degradation of the per
eivedlink quality, as running sessions are interrupted while the reasso
iation is inprogress. Figure 4 shows how the reasso
iation rate behaves over time for allsix distributed algorithms. As expe
ted, un
oordinated re
on�guration leadsto the highest reasso
iation rates for both GA and B&S heuristi
s, as all APstry to re
on�gure their network neighborhood 
on
urrently. On the other hand,this 
on
urren
y of re
on�guration results in the fa
t that both algorithm areable to very qui
kly rea
h low levels of 
ontention. In 
ontrast, the single tokenapproa
h with its sequential re
on�gurations displays the lowest reasso
iationrates, but takes longer to 
onverge to low 
ontention levels. Note that our pre-vious results have shown that both extremes eventually produ
e 
on�gurationsof 
omparable quality. The N token 
ase, �nally, displays both behaviours:It has high reasso
iation rates at the beginning when many tokens exist andqui
kly rea
hes low 
ontention levels. As more and more tokens are destroyed,its 
hara
teristi
s be
ome more similar to the 1-token approa
h.It is further interesting to note that the B&S heuristi
 behaves worse thanthe geneti
 algorithm with many tokens, but that the di�eren
es vanish as thenumber of tokens de
reases.6 Con
lusions and OutlookThe problem of 
ontention between wireless LANs 
onsisting of a large numberof di�erent administrative domains�a 
ommon situation in wireless 
ommu-nity networks�is hard to 
ir
umvent without introdu
ing some form of self-
oordination. In this paper we have taken a �rst step at ta
kling the problem ofminimizing 
ontention in de
entralized wireless 
ommunity networks, an issue24



whi
h until now has not re
eived mu
h attention in the literature, but poses areal pra
ti
al problem to the deployment of emerging large-s
ale WLANs.In parti
ular we have 
ontributed mathemati
al optimization models that
an be used to jointly determine the optimal transmission power settings and
hannel assignments for a

ess points and stations, as well as the optimal as-signment of stations to a

ess points whi
h will result in the least amount of
ontention in the network. The proposed models 
over the 
ase of low traf-�
 intensity, in whi
h only physi
al 
arrier sense is used, as well as the 
ase ofhigh tra�
 intensity, 
onsidering the additional 
ontention 
aused by RTS/CTSframes. In addition, we have presented two theoreti
al lower bounds on 
on-tention, we have provided a transformation of our model to make it solvable withlinear optimizers for small instan
es, and we have presented a geneti
 algorithmwhi
h is spe
ially tailored to solve our 
ontention minimization problem, but islikely to be useful in other wireless network optimization problems as well.Our main 
ontribution in this paper is a distributed algorithm and proto-
ol for self-
oordination of wireless a

ess points from di�erent administrativedomains based solely on knowledge about the immediate neighborhood. Ex-perimental results have shown that our distributed algorithm is 
apable of ex-ploiting between 53% and 67% of the potential for redu
ing network 
ontention
ompared to what 
ould be a
hieved with perfe
t knowledge. Furthermore, wehave presented di�erent self-
oordination s
hemes, enabling tradeo�s betweenfast 
onvergen
e on low 
ontention levels on the one hand and low reasso
iationrates respe
tively low signaling overhead on the other hand. These tradeo�s 
or-respond to the degree of 
on
urren
y that is 
ontrolled by our di�erent tokens
hemes.Besides these en
ouraging performan
e results, we also want to stress themodular framework we devised for the self-
oordination in large-s
ale WLANsunder di�erent domains. It should allow for an easy extension of the 
andidatebuilding blo
ks we devised with building blo
ks from other resear
hers, e.g.for the re
on�guration algorithm where we per
eive that there is still room forimprovement. In parti
ular, it was also possible for us to integrate results fromprevious resear
h into our framework and show its e�e
tiveness.For future work, we per
eive the development of even more e�e
tive re-
on�guration and/or 
oordination s
hemes as a short-term goal. However, ourattention should now also be brought to the 
ooperation assumption and seeif we 
an relax this towards non-
ooperative environments where, of 
ourse,we would require the right in
entive stru
tures. In the same dire
tion we arealready a
tively thinking on how to make the proto
ols se
ure espe
ially withregard to resilien
e against denial of servi
e atta
ks. Currently, we are imple-menting the presented framework on a set of 4G A

ess Cubes manufa
tured by4G Systeme Ltd. in order to be able to investigate its feasibility and s
alabilityin a real-world environment.
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