
Springer Nature 2021 LATEX template

Extending the Network Calculus
Algorithmic Toolbox for

Ultimately Pseudo-Periodic Functions:
Pseudo-Inverse and Composition

Raffaele Zippo1,2,3*, Paul Nikolaus3 and Giovanni Stea2

1*Dipartimento di Ingegneria dell’Informazione, Università di
Firenze, Via di S. Marta 3, Firenze, 50139, Italy.

2Dipartimento di Ingegneria dell’Informazione, Università di Pisa,
Largo Lucio Lazzarino 1, Pisa, 56122, Italy.

3Distributed Computer Systems Lab (DISCO), TU Kaiserslautern,
Paul-Ehrlich-Straße 34, Kaiserslautern, 67663, Germany.

*Corresponding author(s). E-mail(s): raffaele.zippo@unifi.it;
Contributing authors: nikolaus@cs.uni-kl.de;

giovanni.stea@unipi.it;

Abstract
Network Calculus (NC) is an algebraic theory that represents traffic
and service guarantees as curves in a Cartesian plane, in order to com-
pute performance guarantees for flows traversing a network. NC uses
transformation operations, e.g., min-plus convolution of two curves, to
model how the traffic profile changes with the traversal of network nodes.
Such operations, while mathematically well-defined, can quickly become
unmanageable to compute using simple pen and paper for any non-
trivial case, hence the need for algorithmic descriptions. Previous work
identified the class of piecewise affine functions which are ultimately
pseudo-periodic (UPP) as being closed under the main NC operations
and able to be described finitely. Algorithms that embody NC oper-
ations taking as operands UPP curves have been defined and proved
correct, thus enabling software implementations of these operations.
However, recent advancements in NC make use of operations, namely the
lower pseudo-inverse, upper pseudo-inverse, and composition, that are
well-defined from an algebraic standpoint, but whose algorithmic aspects

1

Springer Nature 2021 LATEX template

2 Extending the NC Algorithmic Toolbox for UPP Functions

have not been addressed yet. In this paper, we introduce algorithms for
the above operations when operands are UPP curves, thus extending
the available algorithmic toolbox for NC. We discuss the algorithmic
properties of these operations, providing formal proofs of correctness.

Keywords: Network calculus, min-plus algebra, algorithms, pseudo-inverse,
composition

1 Introduction
Network Calculus (NC) is an algebraic theory where traffic and service guar-
antees are represented as functions of time. The I/O transformations that
network traversal imposes on an input traffic can be represented as operations
of min-plus algebra involving these curves. This allows one to compute worst-
case performance guarantees for a flow traversing a network. NC dates back
to the early 1990s, and it is mainly due to the work of Cruz [1, 2], Le Boudec
and Thiran [3], and Chang [4]. Originally devised for the Internet, where it
was used to engineer models of service [5–9], it has found applications in sev-
eral other contexts, from sensor networks [10] to avionic networks [11, 12],
industrial networks [13–15], automotive systems [16], and systems architecture
[17, 18].

NC characterizes constraints on traffic arrivals (due to traffic shaping) and
on minimum received service (due to scheduling) as curves, i.e., functions of
time.1 These curves are then used with operators from min-plus and max-plus
algebra to derive further insights about the system. For example, the per-flow
service curve of a scheduler, such as Weighted Round Robin, or performance
bounds on the traffic such as an end-to-end delay bound. While these oper-
ations can be computed with pen and paper for simple examples, in most
practical cases the application of NC requires the use of software. To this end,
works [19, 20] provide an “algorithmic toolbox” for NC: they show that piece-
wise affine functions that are ultimately pseudo-periodic (UPP) represent good
models for both traffic and service guarantees. Moreover, they prove that this
class of functions is closed under the main NC operations and can be described
with a finite amount of information. Additionally, they introduce the algo-
rithms that embody the main NC operations, computing UPP results starting
from UPP operands. The results in these works cover the main operations used
in NC, such as minimum, min-plus convolution, min-plus deconvolution, etc.
(see [20] for a complete list). The toolbox was first implemented in the COINC
free library [21], which is not available anymore, and later by the commercial
library RTaW-Pegase [22].

However, other NC operators, i.e., the composition and lower and
upper pseudo-inverse, have been the focus of recent NC literature. In [20,
Theorem 8.6], lower pseudo-inverse and composition are used to compute

1We use the terms function and curve interchangeably.

Springer Nature 2021 LATEX template

Extending the NC Algorithmic Toolbox for UPP Functions 3

the per-flow service curve for a Weighted Round-Robin scheduler; in [23,
Theorem 1], a similar result is shown for an Interleaved Weighted Round-
Robin scheduler, using again lower pseudo-inverse and composition; in [24],
authors show that several service curves can be found for a flow scheduled in
a Deficit Round-Robin scheduler, under different hypotheses regarding cross-
traffic. Works [25, 26] use pseudo-inverses and compositions to study properties
of IEEE Time-Sensitive Networking (TSN) [27], a standard relevant for many
applications. Work [28] shows the duality between min-plus and max-plus
models, and how the lower and upper pseudo-inverses can be used to switch
between the two models. This is exploited in [29] to devise an alternative
algorithm for min-plus convolution, which transforms it into a max-plus con-
volution, obtaining a considerable speedup in the settings discussed in that
paper. We can therefore obtain the results presented in these papers, using
arbitrarily complex UPP curves as inputs.

While the algebraic formulation of these three operations is well known,
their algorithmic aspects have not been addressed, to the best of our knowl-
edge. This means that we do not have publicly known algorithms that compute
these operations yet. In this paper, we aim to fill this gap and extend the
existing algorithm toolbox to include lower- and upper-pseudo inverses and
composition of functions.

We show that the UPP class is closed with respect to these operations,
and provide algorithms to compute the result of each one. We prove that all
of them have linear complexity with respect to the number of segments that
represent the operands. We design specialized, more efficient versions of the
composition algorithm that leverage characteristics of the operand functions
– notably, their being Ultimately Affine (UA) or Ultimately Constant (UC)
[20]. Last, we exemplify our findings on a comprehensive proof of concept,
showing how to compute the per-flow service curve of [23, Theorem 1]. The
algorithms described in this paper, together with those for known NC oper-
ators, are implemented in the Nancy open-source toolbox [30], which, to the
best of our knowledge, is the only public one to implement UPP algorithms.

The rest of this paper is organized as follows: Section 2 briefly introduces
NC notation and some basic results. Section 3 introduces the definitions and
notation used throughout the paper, and discusses the kind of results that we
need to provide for each operator to enable their implementation. In Section 4,
we present the results for the lower and upper pseudo-inverse operators, includ-
ing their properties for UPP curves and algorithms to compute them. Section 5
shows our results for the composition operator, including its properties on
UPP curves and an algorithm to compute it. In Section 6, we report a proof-
of-concept evaluation, by computing the results of a recent NC paper via our
algorithms. Finally, Section 7 draws some conclusions and highlights directions
for future works.

Springer Nature 2021 LATEX template

4 Extending the NC Algorithmic Toolbox for UPP Functions

bits

Fig. 1: Example of leaky-bucket shaper, taken from [17]. The traffic process
A(t) is always below the arrival curve α(t) and its translations along A(t).

2 Network Calculus Basics
This section briefly introduces Network Calculus (NC). We use here the same
notation as in [3], to which the interested reader is referred for a more in-
depth explanation. A NC flow is represented by a function of time A(t) that
counts the amount of traffic arrived by time t. Such function is necessarily
non-decreasing. It is often assumed to be left-continuous, i.e., A(t) represents
the number of bits in [0, t[. In particular, A(0) = 0.

Flows can be constrained by arrival curves. A non-decreasing function α
is an arrival curve for a flow A if

A(t)−A(s) ≤ α(t− s), ∀s ≤ t.

For instance, a leaky-bucket shaper, with a rate ρ and a burst size σ, enforces
the affine arrival curve

γσ,ρ(t) =

{
σ + ρt, if t > 0,

0, otherwise,

as shown in Figure 1. In particular, this means that the long-term arrival rate
of the flow cannot exceed ρ. Leaky-bucket shapers are often employed at the
entrance of a network, to ensure that the injected traffic does not exceed the
negotiated amount.

Let A and D be non-decreasing functions that describe the same data flow
at the input and output of a lossless network element (or node), respectively. 2
If that node does not create data internally (which is often the case), causality
requires that A ≥ D. We say that the node guarantees to the flow a (minimum)
service curve β if

D(t) ≥ inf
0≤s≤t

{A(s) + β(t− s)} =: (A⊗ β)(t), ∀t ≥ 0. (1)

2The function argument t is omitted whenever it is clear from the context.

Springer Nature 2021 LATEX template

Extending the NC Algorithmic Toolbox for UPP Functions 5

Fig. 2: Graphical interpretation of the convolution operation. A is the input
function, βR,θ is a rate-latency service curve, and A ⊗ β is a lower bound on
the output.

Fig. 3: Graphical example of a delay bound.

We call the operation on the right the min-plus convolution of A and β. Several
network elements, such as delay elements, schedulers or links, can be modeled
through service curves.

A very frequent case is the one of rate-latency service curves, defined as

βR,θ(t) = R · [t− θ]+

for some rate R > 0 and latency θ ≥ 0. We write [·]+ to denote max {·, 0}.
For instance, a constant-rate server (e.g., a wired link) can be modeled as a
rate-latency service curve with zero latency. Figure 2 shows the lower bound
of D obtained by computing A⊗ β, with β = βR,θ.

A point of strength of NC is that service curves are composable: the end-
to-end service curve of a tandem of nodes traversed by the same flow can be
computed as the min-plus convolution of the service curves of each node.

Springer Nature 2021 LATEX template

6 Extending the NC Algorithmic Toolbox for UPP Functions

For a flow that traverses a service curve (be it the one of a single node, or
the end-to-end service curve of a tandem computed as discussed above), an
upper bound on the delay can be computed by combining its arrival curve α
and the service curve β itself, as follows:

h(α, β) = sup
t≥0
{inf {d ≥ 0 | α(t− d) ≤ β(t)}} . (2)

The quantity h(α, β) is in fact the maximum horizontal distance between
α and β, as shown in Figure 3. Therefore, computing the end-to-end service
curve of a flow in a tandem traversal is the crucial step towards obtaining its
worst-case delay bound.

The above introduction, albeit concise, should convince the alert reader
that algorithms for automated manipulation of curves, implementing NC oper-
ators, are necessary to reap the benefits of NC algebra in practical scenarios.
Many such algorithms have been discussed in [19, 20]. The next section
describes the generic algorithmic framework exposed in these papers, which
we extend in this work.

3 Mathematical Background and Notation
In this section, we provide an overview of the mathematical background for
this paper, including the definitions used and the results we aim to provide.

NC computations can be implemented in software. In order to do so, one
needs to provide finite representations of functions and well-formed algorithms
for NC operations. According to the widely accepted approach described in
[19, 20], a sufficiently generic class of functions useful for NC computations
is the set U of (i) ultimately pseudo-periodic (ii) piecewise affine Q+ → Q ∪
{+∞,−∞} functions. We define both properties (i) and (ii) separately:

Definition 1 (Ultimately Pseudo-Periodic Function [19, p. 8]) Let f be a function
Q+ → Q ∪ {+∞,−∞}. Then, f is ultimately pseudo-periodic (UPP) if there exist
Tf ∈ Q+, df ∈ Q+ \ {0}, cf ∈ Q ∪ {+∞,−∞} such that3

f(t+ k · df) = f(t) + k · cf , ∀t ≥ Tf , ∀k ∈ N. (3)

We call Tf the (pseudo-periodic) start or length of the initial transient, df the
(pseudo-periodic) length, and cf the (pseudo-periodic) height.

Definition 2 (Piecewise Affine Function [19, p. 9]) We say that a function f is
piecewise affine (PA) if there exists an increasing sequence (ai), i ∈ N0 which tends
to +∞, such that a0 = 0 and ∀i ∈ N0, it either holds that f(t) = bi + ρit for some
bi, ρi ∈ Q, or f(t) = +∞, or f(t) = −∞ for all t ∈]ai, ai+1[. The ai’s are called
breakpoints.

3We denote the set of non-negative numbers {0, 1, 2, 3, . . . } by N0 and the set of strictly
positive numbers {1, 2, 3, . . . } by N.

Springer Nature 2021 LATEX template

Extending the NC Algorithmic Toolbox for UPP Functions 7

Tf

df

cf

time

data

(a) f

Tf

df

cf

time

data

(b) Rf

Fig. 4: Example of ultimately pseudo-periodic piecewise affine function f and
its representation Rf .

In [19], this class of functions is shown to be stable w.r.t. all min-plus opera-
tions, while functions R+ → R∪{+∞,−∞} are not.4 We remark that functions
in U are not necessarily wide-sense increasing. While NC functions are usually
assumed to be so, in order to implement min-plus operations it is sometimes
useful to include non-monotonic functions as well. Similarly, functions in U can
assume infinite values. This is also useful for algebraic manipulations, e.g., to
express a function as a minimum of two or more functions. Throughout this
paper, we will consider all functions to be in U , hence, piecewise affine and
UPP. For such functions, it is enough to store a representation of the initial
transient part and of one period, which is a finite amount of information. This
is exemplified in Figure 4.

Accordingly, we call a representation Rf of a function f the tuple
(S, T, d, c), where T, d, c are the values described above, and S is a sequence
of points and open segments describing f in [0, T + d[. We use both points
and open segments in order to easily model discontinuities. We will use the
umbrella term elements to encompass both when convenient.

Definition 3 (Point) We define a point as a tuple

pi := (ti, f(ti)), i ∈ {1, . . . , n} .

Definition 4 (Segment) We define a segment as a tuple

si :=
(
ti, ti+1, f(t

+
i), f(t

−
i+1)

)
, i ∈ {1, . . . , n}

which describes f in the open interval]ti, ti+1[in which it is affine, i.e.,

f(t) = f(t+i) +
f(t−i+1)− f(t

+
i)

ti+1 − ti
· (t− ti) =: b+ r · (t− ti) for all t ∈]ti, ti+1[,

4An alternative class of functions with such stability is N → R, however this is only feasible
for models where time is discrete.

Springer Nature 2021 LATEX template

8 Extending the NC Algorithmic Toolbox for UPP Functions

where we used the following shorthand notation for one-sided limits:

f
(
t+i

)
= lim
t→t+i

f (t) , f
(
t−i

)
= lim
t→t−i

f (t) .

If r = 0, we call si a constant segment.

Definition 5 (Sequence) We define a sequence SDf as on ordered set of elements
e1, . . . , en that alternate between points and segments and describe f in the finite
interval D ⊂ Q+.

For example, given D = [0, T [, then SDf = {p1, s1, p2, . . . , pn, sn} where
p1 = (0, f(0)) and, assuming pn = (tn, f(tn)) for some 0 < tn < T , sn =
(tn, T, f(t

+
n), f(T

−)).
Note that, given Rf , one can compute f(t) for all t ≥ 0, and also SDf for any

interval D. Furthermore, being finite, Rf can be used as a data structure to
represent f in code. As discussed in depth in [31], Rf is not unique, and using a
non-minimal representation of f can affect the efficiency of the computations.
Work [31] also describes an efficient algorithm that minimizes a representation
Rf (i.e., computes the smallest Tf , df that are required to represent f). Given
a sequence S, let n(S) be its cardinality. As it is useful in the following, we
define Cut to be an (obvious) algorithm that, given Rf and D, computes SDf .
With a little abuse of notation, we use min-plus operators directly on finite
sequences such as SDf . For instance, given the lower pseudo-inverse of f , (f)−1↓

(its formal definition is in the next section), we will write
(
SDf

)−1
↓

, to express

that we are computing it on f over the limited interval D.
A NC operator can then be defined computationally as an algorithm that

takes UPP representations of its input functions and yields a UPP represen-
tation of the result, provided that the class of UPP functions is closed with
respect to such operator. Considering a generic unitary operator [·]∗, in order to
compute f∗ we need an algorithm that computes Rf∗ from Rf , i.e., Rf → Rf∗ .
We call this by-curve algorithm. This process can be divided in the following
steps:
1. compute valid parameters Tf∗ , df∗ and cf∗ for the result;
2. compute SDf → Sf∗ , i.e., use an algorithm that computes the result-

ing sequence from the sequence of the operand. We call this by-sequence
algorithm for operator [·]∗. In order to run this algorithm, a suitable
domain D must be identified, based on the properties of operator [·]∗,
and, accordingly, one must compute sequence SDf = Cut(Rf , D);

3. return Rf∗ = (Sf∗ , Tf∗ , df∗ , cf∗).
We therefore need to provide the following results:

• a proof that the result of the operator [·]∗, applied to a UPP function,
yields a UPP result;

• a way to compute UPP parameters Tf∗ , df∗ and cf∗ from Rf ;
• a valid domain D, again to be computed from Rf ;
• a by-sequence algorithm.

Springer Nature 2021 LATEX template

Extending the NC Algorithmic Toolbox for UPP Functions 9

Combining the above results, we can then construct the by-curve algorithm
for operator [·]∗, which allows one to compute [·]∗ for any UPP curve.5

We exemplify the above by showing the by-curve algorithm for the left
shift of a function by τ ≥ 0. Given f(t), whose representation is Rf =
(Sf , Tf , df , cf), we want to compute the representation Rg = (Sg, Tg, dg, cg)
of g(t) = f(t + τ). Quite intuitively, it is Tg = [Tf − τ]+, dg = df , cg = cf .
Moreover, the valid domain D where we need to define sequence SDf for the
by-sequence algorithm is D = [τ,max{τ, Tf}+ df [. We leave to the interested
reader the straightforward (yet tedious) task of deriving sequence Sg from SDf ,
i.e., of figuring out the by-sequence algorithm for this operator.

Works [19, 20] provided such computational descriptions for fundamental
NC operators such as minimum, sum, convolution, and many others. In this
paper, we extend the above toolbox by adding the lower pseudo-inverse, upper
pseudo-inverse, and composition operators. To the best of our knowledge, no
computational description of the above has been formalized before, despite
their relevance in the NC literature.

Before presenting our contribution, we introduce two more definitions that
will be used throughout the paper.

Definition 6 (Ultimately Affine Function) Let f be a function Q+ → Q ∪
{+∞,−∞}. Then, f is Ultimately Affine (UA), if either there exist Taf ∈ Q+, ρf ∈ Q
such that

f(t) = f(Taf) + ρf ·
(
t− Taf

)
, ∀t ≥ Taf , (4)

or f(t) = +∞, or f(t) = −∞ for all t ≥ Taf .

Note that this definition differs from the one in the literature [19], but we
prove their equivalence in Appendix A. UA functions are (obviously) UPP
as well, their period being a single segment of slope ρf and arbitrary length
starting at T af . They occur quite often in NC, e.g., the arrival curve of a leaky-
bucket shaper or a rate-latency service curve are both UA. An Ultimately
Constant (UC) function is UA with ρf = 0. Similarly, an Ultimately Infinite
(UI) function is UA with f(t) = +∞, or f(t) = −∞ for all t ≥ T af .

Unlike UPP, the class of UA functions is not closed with respect to NC
operations. For instance, [31] shows that flow-controlled networks with rate-
latency (hence UA) service curves yield closed-loop service curves that are
UPP, but not necessarily UA again. Moreover, in many cases, the service
curves of individual flows served by Round-Robin schedulers are UPP, but
not UA either (see, e.g., [23, 24, 32]). However, there are cases when simpler
algorithms for NC operations can be derived if one assumes that operands
are UA. For this reason, there are NC toolboxes that only consider UA func-
tions, e.g., [33]. A possible approach to NC analysis is thus to approximate
UPP (non-UA) functions with UA lower/upper bounds, trading some accu-
racy for computation time [34, 35]. Throughout this paper, we provide general

5The same process applies also, with minor adjustments, to binary operators.

Springer Nature 2021 LATEX template

10 Extending the NC Algorithmic Toolbox for UPP Functions

algorithms for UPP functions. However, we also show what is to be gained –
in terms of domain compactness and/or algorithmic efficiency – when we can
make stronger assumptions on the operands.

4 Lower and Upper Pseudo-Inverse of UPP
Functions

In this section, we discuss the lower and upper pseudo-inverse operators for
UPP functions. Henceforth, we will omit the lower or upper attribute when
the discussion applies to both.

First, we provide formal definitions.

Definition 7 (Lower and Upper Pseudo-Inverse) Let f ∈ U be non-decreasing. Then
its lower pseudo-inverse is defined as

f−1↓ (y) := inf {t ≥ 0 | f(t) ≥ y} ,

and its upper pseudo-inverse is defined as

f−1↑ (y) := sup {t ≥ 0 | f(t) ≤ y} .

We can find an equivalent definition as follows.

Proposition 8 Let f ∈ U be non-decreasing. For all y > f(0), its lower pseudo-
inverse is equal to

f−1↓ (y) = sup {t ≥ 0 | f(t) < y} , (5)

and for all y ≥ f(0), its upper pseudo-inverse is equal to

f−1↑ (y) = inf {t ≥ 0 | f(t) > y} . (6)

Note that [28] reports a slightly different definition, because functions are
defined in R → R. Our functions in U are defined in Q+ → Q, hence our
domain is lower bounded. The consequences of this difference are discussed in
Appendix B, which also contains a proof of Proposition 8.

Note that the lower pseudo-inverse is left-continuous and the upper pseudo-
inverse is right-continuous [28, p. 64]. Moreover, we have in general that [28,
p. 61]

f−1↓ ≤ f−1↑ .

An example of these operators is shown in Figure 5.
Figure 5 shows a UPP function and its lower and upper pseudo-inverses.

In NC, both pseudo-inverses are useful to switch from min-plus to max-plus
algebra and vice versa [28]. Later on, in Section 5, we provide the examples
of Equation (15) which uses the lower pseudo-inverse in conjunction with the
composition operator, and of Algorithm 3 which shows that the lower pseudo-
inverse is required to compute the composition between two UPP curves.

Springer Nature 2021 LATEX template

Extending the NC Algorithmic Toolbox for UPP Functions 11

T

d

c

time

data

(a) A function f .

T

d

c

time

data

(b) Its lower pseudo-inverse f−1↓ .

T

d

c

time

data

(c) Its upper pseudo-inverse f−1↑ .

Fig. 5: Example of lower and upper pseudo-inverse of a function f .

The rest of this section is organized as follows. In Section 4.1 we show that
the pseudo-inverse of a UPP function is still UPP, and provide expressions to
compute its UPP parameters a priori. In Section 4.2 we discuss, first through a
visual example and then via pseudocode, how to algorithmically compute the
pseudo-inverse. In Section 4.3 we conclude with a summary of the by-curve
algorithm, some observations on the algorithmic complexity of this operator.
In Section 4.4 we discuss corner cases.

4.1 Properties of pseudo-inverses of UPP functions
We discuss our properties for a generic function f , excluding the cases of
UC and UI functions. These two cases are treated separately for ease of pre-
sentation. At the end of this section, we report the necessary information
for the alert reader to retrace the steps exposed hereafter to include these
two corner cases. We remark that the Nancy software library [30] computes

Springer Nature 2021 LATEX template

12 Extending the NC Algorithmic Toolbox for UPP Functions

pseudo-inverses of generic (non-decreasing) UPP functions, including UC and
UI ones.

Theorem 9 Let f ∈ U be a non-decreasing function that is neither UC nor UI.
Then, its lower pseudo-inverse f−1↓ (x) = inf {t | f(t) ≥ x} is again a function ∈ U
with

Tf−1
↓

= f
(
Tf + df

)
, (7)

df−1
↓

= cf , (8)

cf−1
↓

= df . (9)

Proof Let t1 ≥ Tf + df and x := f(t1). Moreover, we define

t0 := f−1↓ (x) = inf {t | f(t) ≥ x} = inf {t | f(t) ≥ f(t1)} .

By definition, it is clear that t0 ≤ t1 (t1 satisfies the condition inside the infimum,
and t0 is its largest lower bound). Moreover, since it holds that f(t+df) = f(t)+cf
for all t ≥ Tf , we can conclude that, for all τ ≥ Tf + df ,

f(τ) = f
(
(τ − df) + df

)
= f(τ − df) + cf .

Thus,
f(τ − df) = f(τ)− cf . (10)

Since f is non-UC (i.e., cf > 0), and we have by definition t1 ≥ Tf + df , it follows
that

f(Tf) ≤ f(t1 − df)
(10)
= f(t1)− cf < f(t1) = f(t0),

where we used in the strict inequality that f is not UC and thus t0 > Tf . Therefore,
for any k ∈ N,

f−1↓

(
x+ k · df−1

↓

)
= inf

{
t | f(t) ≥ x+ k · df−1

↓

}
(8)
= inf

{
t | f(t) ≥ x+ k · cf

}
= inf

{
t | f(t) ≥ f(t1) + k · cf

}
= inf

{
t | f(t) ≥ f(t0) + k · cf

}
= inf

{
t | f(t) ≥ f(t0 + k · df)

}
= t0 + k · df
(9)
= f−1↓ (x) + k · cf−1

↓
.

�

It follows from Theorem 9 that, in order to compute a representation Rf−1
↓

,

we need only to compute SD
′

f−1
↓

where

D′ =
[
0, Tf−1

↓
+ df−1

↓

[
= [0, f(Tf + df) + cf [.

Springer Nature 2021 LATEX template

Extending the NC Algorithmic Toolbox for UPP Functions 13

If there is no left-discontinuity in Tf + 2 · df , it follows that

SD
′

f−1
↓

=
(
SDf
)−1
↓ ,

where
D = [0, Tf + 2 · df [. (11)

Otherwise, let x1 = f ((Tf + 2 · df)−) and x2 = f (Tf + 2 · df), then x1 < x2,
and therefore SD

′

f−1
↓

must end with a constant segment defined in]x1, x2[with

ordinate Tf + 2 · df . Such segment must be added manually at the end of(
SDf

)−1
↓

.

A similar result can be derived for the upper pseudo-inverse.

Theorem 10 Let f ∈ U be a non-decreasing function that is neither UC nor UI.
Then, the upper pseudo-inverse f−1↑ (x) = sup {t | f(t) ≤ x} is again a function ∈ U
with

Tf−1
↑

= f
(
Tf
)
, (12)

df−1
↑

= cf , (13)

cf−1
↑

= df . (14)

Proof The proof follows the same steps as the one for the lower pseudo-inverse. Let
t0 ≥ Tf and x := f(t0). Moreover, we define

t1 := f−1↑ (x) = sup {t | f(t) ≤ x} = sup {t | f(t) ≤ f(t0)} .

By definition, it is clear that t0 ≤ t1 (t0 satisfies the condition in the supremum, and
t1 is the largest to satisfy it). Since f is non-UC, and we have by definition t0 ≥ Tf ,
it follows that

f(t0 + df)
(3)
= f(t0) + cf > f(t0) = f(t1),

where we used in the strict inequality that f is not ultimately constant and thus
t1 < t0 + df <∞. Therefore, for any k ∈ N,

f−1↑

(
x+ k · df−1

↑

)
= sup

{
t | f(t) ≤ x+ k · df−1

↑

}
(13)
= sup

{
t | f(t) ≤ x+ k · cf

}
= sup

{
t | f(t) ≤ f(t0) + k · cf

}
= sup

{
t | f(t) ≤ f(t1) + k · cf

}
= sup

{
t | f(t) ≤ f(t1 + k · df)

}
= t1 + k · df
(14)
= f−1↑ (x) + k · cf−1

↑
.

�

Springer Nature 2021 LATEX template

14 Extending the NC Algorithmic Toolbox for UPP Functions

Similar to the previous theorem, it follows from Theorem 10 that, in order
to compute a representation Rf−1

↑
, we need only to compute SD

′

f−1
↑

, where

D′ =
[
0, Tf−1

↑
+ df−1

↑

[
= [0, f(Tf) + cf [.

If there is no left-discontinuity in Tf + df , it follows that

SD
′

f−1
↑

=
(
SDf
)−1
↑ ,

where
D = [0, Tf + df [.

Otherwise, let x1 = f ((Tf + df)
−) and x2 = f (Tf + df), then x1 < x2,

and therefore SD
′

f−1
↑

must end with a constant segment defined in]x1, x2[with

ordinate Tf+df . Such segment must be added manually at the end of
(
SDf

)−1
↑

.

The alert reader will notice that Tf−1
↓

and Tf−1
↑

differ, for which we can provide
the following intuitive explanation. Consider a function f so that f(t) = k, ∀t ∈
]a, T+b[with a < T, b > 0. Then f−1↓ (k) = a, as the lower pseudo-inverse “goes
backwards” to the start of the constant segment. However, since a < T , the
pseudo-periodic property does not apply for f(a), i.e., we cannot say anything
about f(a+d). So, in general, we cannot say f−1↓ is pseudo-periodic from f(T),
and we instead need to “skip” to the second pseudo-period so that, as in the
proof, T < a < T + d.
The same does not apply for f−1↑ , however, since f−1↑ (k) = T + b as the
upper pseudo-inverse “goes forward” to the end of the constant segment and
T + b > T , thus we can rely on the pseudo-periodic property of f .

An interesting consequence of this discussion is that the representation Rf
may change when we do not expect it to. From [28, p. 64], [20, p. 48], we know
the following properties:

• if f is left-continuous,
(
f−1↓

)−1
↓

=
(
f−1↑

)−1
↓

= f ,

• if f is right-continuous,
(
f−1↑

)−1
↑

=
(
f−1↓

)−1
↑

= f .

Thus, one may expect that applying the pseudo-inverse twice would lead to a

function with the same representation, i.e., that
(
(Rf)

−1
↓

)−1
↓

= Rf . However,

as per the discussion above, the start of the pseudo-period of the result would
wove from an initial Tf to Tf+df+cf . This is unavoidable – the above example
shows that there exists one case when Tf would not be the correct starting
point. However, in other cases, Tf would be the correct starting point for the
pseudo-periodic behavior.

This is an instance of a general issue encountered with algorithms for UPP
curves – also discussed in [31]. Generic algorithms, that make no assump-
tions on the shape of the operands (such as the ones presented here for

Springer Nature 2021 LATEX template

Extending the NC Algorithmic Toolbox for UPP Functions 15

the pseudo-inverse), may in general yield non-minimal representations of the
result. Generally speaking, minimal representations are preferable, since the
number of elements in a sequence affects the complexity of the algorithms.
However, addressing the issue of representation minimization a priori when
implementing NC operators is too hard (if doable at all), since one would
need to make a comprehensive list of subcases, and, of course, as many for-
mal proofs of correctness. It is instead considerably more efficient to devise
a generic algorithm for an operator, neglecting minimization, and then use a
simple algorithm a posteriori that minimizes the representation of the result
– see [31].

4.2 By-sequence algorithm for pseudo-inverses
In this section we discuss the by-sequence algorithms for pseudo-inverses. We
recall that with “by-sequence” we mean that the operand, and thus its result,
is defined on a limited domain. Without loss of generality, we will focus on
a sequence S representing a function f over an interval [0, t[, with f(0) = 0.
Then, S−1↓ is the sequence representing f−1↓ over interval [0, f(t−)[. The same
applies to S−1↑ .

The simplest case is when S is continuous and strictly increasing, hence
bijective. In this case, both S−1↓ and S−1↑ are the classic inverse of S, and the
algorithm consists of drawing, for each point and segment of S, its reflection
over the line y = x. However, when S includes discontinuities and/or constant
segments, the algorithm becomes slightly more complicated: a discontinuity
in S “maps” to a constant segment in both S−1↓ and S−1↑ , while a constant
segment in S “maps” to a right-discontinuity in S−1↓ and a left-discontinuity
in S−1↑ . This is exemplified in Figure 6.

We describe Algorithm 1 for the lower pseudo-inverse (the one for the
upper pseudo-inverse differs in few details which we briefly discuss later). Algo-
rithm 1 linearly scans S considering one element at a time. Based on the type
of element (point or segment), as well as on its topological relationship with
its predecessor, it decides what to add to S−1↓ .

More in detail, there are eight possible cases, shown in Table 1, which
require zero, one, two, or three elements to be added to S−1↓ . These are reported
in the same order in Algorithm 1. The rigorous (though cumbersome) mathe-
matical justification for each case is instead postponed to Appendix C for the
benefit of the interested reader.

We exemplify the above algorithm with reference to the example in
Figure 6. For each of the considered steps, we will reference the case in Table 1,
the line of Algorithm 1, and the relevant equations from Appendix C proving
the result. Processing each element from left to right, we calculate:

• The origin (t1, f(t1)) = (0, 0) for f−1↓ (0).
• For the segment s1 and its predecessor point p1 = (t1, f(t1)): this cor-
responds to Line 22 of the algorithm. Since s1 has a positive slope, we
continue in Line 31. As the function is right-continuous at t1, we are in

Springer Nature 2021 LATEX template

16 Extending the NC Algorithmic Toolbox for UPP Functions

t1 t2 t3 t4
f(t1)

f(t2)

f(t4)

ρ1

ρ2

ρ3

time

data

(a) S

t1

t2

t3

t4

f(t1) f(t2) f(t4)

1/ρ1

1/ρ3

time

data

(b) S−1↓

t1 t2 t3 t4
f(t1)

f(t2)

f(t4)

ρ1

ρ2

ρ3

time

data

(c)
(
S−1↓

)−1
↓

Fig. 6: Example of lower pseudo-inverse of a sequence S. Since S is left-

continuous, S =
(
S−1↓

)−1
↓

.

case c8. We go to Line 36 and add a segment s =
(
f(t+1), f(t

−
2), t1, t2

)
to

O. It can be verified that this follows Equation (43).
• For the point p2 = (t2, f(t2)) and its preceding segment s1, we are in
case c4, corresponding to Line 18 and we therefore append the point
p := (f(t2), t2) to O. It can be verified that this follows Equation (35).

• For the constant segment s2 with preceding point p2 = (t2, f(t2)), we
are in case c6, corresponding to Line 28, and no element is added. This
follows Equation (39).

• For the point p3 = (t3, f(t3)) with preceding constant segment s2, we
are in case c2, corresponding to Line 10, and no element is added. This
follows Equation (31).

• For a segment s3 with preceding point (t3, f(t3)), we are in case
c8, Line 36, and append s :=

(
f(t+3), f(t

−
4), t3, t4

)
to O (verified in

Equation (43)).

Springer Nature 2021 LATEX template

Extending the NC Algorithmic Toolbox for UPP Functions 17

We note that, since S−1↓ is left-continuous, when a continuous sequence of
a point, a constant segment, and a point is encountered in S, they all “map”
to the inverse of the first (leftmost) point of this sequence. This justifies the
fact that nothing has to be added to S−1↓ in these cases (e.g., 2 and 6).

The algorithm for S−1↑ , that we omit here for brevity, differs from the one
provided only in how constant segments are handled, that is, by appending the
inverse of the last (rightmost) point instead of the first (recall that the upper
pseudo-inverse is right-continuous). This requires the algorithm for S−1↑ to look
ahead to the next element during the linear scan. We leave the (tedious, but
simple) task of spelling out the minutiae of this algorithm to the interested
reader.

Springer Nature 2021 LATEX template

18 Extending the NC Algorithmic Toolbox for UPP Functions

Table 1: Cases to be considered in the by-sequence algorithm to compute S−1↓
Considered
Element

Constant
segment

Discontinuity
in S

Example of S Append to
S−1
↓

Case #

Point
after segment

Yes Yes t1 t2

b1

b2

0 b1 b2

t1

t2

0
c1

No t1 t2

b1

0 nothing
to append c2

No Yes t1 t2

b1

b2

b3

0 b1b2b3

t1
t2

0
c3

No t1 t2

b1

b2

0 b1 b2

t1

t2

0
c4

Segment
after point

Yes Yes t1 t2

b1

b2

0 b1 b2

t1

t2

0
c5

No t1 t2

b1

0 nothing
to append c6

No Yes t1 t2

b1

b2

b3

0 b1b2b3

t1
t2

0
c7

No t1 t2

b1

b2

0 b1 b2

t1

t2

0
c8

Springer Nature 2021 LATEX template

Extending the NC Algorithmic Toolbox for UPP Functions 19

Algorithm 1 Pseudocode for lower pseudo-inverse of a finite sequence
Input Finite sequence of elements S, consisting of ek, k ∈ {1, . . . , n} that

is either a point or a segment. Moreover, e1 is a point at the origin (0, 0).
Return Lower pseudo-inverse S−1↓ of S, consisting of a sequence of

elements O = {o1, . . . , om}.
1: Define an empty sequence of elements O := { }
2: Append p := (0, 0) to O . f−1↓ (e0)

3: for ek in (e2, . . . , en) do . The for loop starts after the origin
4: if ek == pi then . The element is a point
5: ek−1 is a segment si−1
6: if si−1 is constant then
7: if f(t−i) < f(ti) then . f is not left-cont. at ti
8: Append s :=

(
f(t−i), f(ti), ti, ti

)
to O . (c1)

9: Append p := (f(ti), ti) to O
10: else . f is left-cont. at ti
11: Nothing to append . (c2)
12: end if
13: else . si−1 is not constant
14: if f(t−i) < f(ti) then . f is not left-cont. at ti
15: Append p :=

(
f(t−i), ti

)
to O . (c3)

16: Append s :=
(
f(t−i), f(ti), ti, ti

)
to O

17: Append p := (f(ti), ti) to O
18: else . f is left-cont. at ti
19: Append p := (f(ti), ti) to O . (c4)
20: end if
21: end if
22: else . The element is a segment si
23: ek−1 is a point pi
24: if ek = si is constant then
25: if f(ti) < f(t+i) then . f is not right-cont. at ti
26: Append s :=

(
f(ti), f(t

+
i), ti, ti

)
to O . (c5)

27: Append p :=
(
f(t+i), ti

)
to O

28: else . f is right-cont. at ti
29: Nothing to append . (c6)
30: end if
31: else . si is not constant
32: if f(ti) < f(t+i) then . f is not right-cont. at ti
33: Append s :=

(
f(ti), f(t

+
i), ti, ti

)
to O . (c7)

34: Append p :=
(
f(t+i), ti

)
to O

35: Append s :=
(
f(t+i), f(t

−
i+1), ti, ti+1

)
to O

36: else . f is right-cont. at ti
37: Append s :=

(
f(t+i), f(t

−
i+1), ti, ti+1

)
to O . (c8)

38: end if
39: end if
40: end if
41: end for

Springer Nature 2021 LATEX template

20 Extending the NC Algorithmic Toolbox for UPP Functions

4.3 By-curve algorithm for pseudo-inverses
We can now discuss the by-curve algorithm by combining the results presented
in Sections 4.1 and 4.2. In Algorithm 2, we show the pseudocode to compute
f−1↓ for a UPP function f . The analogous for upper pseudo-inverse, which we
omit for brevity, can be similarly derived from the results in the sections above.

Algorithm 2 Pseudocode for lower pseudo-inverse of a UPP function
Input Representation Rf of a non-decreasing UPP function f , consisting

of sequence Sf and parameters Tf , df and cf .
Return Representation Rf−1

↓
of f−1↓ .

1: Compute the UPP parameters for the result . Theorem 9
2: Tf−1

↓
← f (Tf + df)

3: df−1
↓
← cf

4: cf−1
↓
← df

5: Compute SDf . Equation (11)
6: D ← [0, Tf + 2 · df [
7: SDf ← Cut(Rf , D)

8: Compute Sf−1
↓
←
(
SDf

)−1
↓

. Algorithm 1

9: Rf−1
↓
←
(
Sf−1
↓
, Tf−1

↓
, df−1
↓
, cf−1
↓

)

Regarding the complexity of Algorithm 2, we note that the main cost is

computing
(
SDf

)−1
↓

. Since Algorithm 1 is a linear scan of the input sequence,

the resulting complexity is O
(
n
(
SDf

))
.

4.4 Corner cases: UC and UI functions
We conclude this section by discussing the two corner cases that we had
initially left out, i.e., those when f is either Ultimately Constant (UC) or
Ultimately Infinite (UI).

To obtain a representation of a UC or UI function, it is enough to find
any Tf for which f(t) = C, C ∈ Q, (UC) or f(t) = +∞ (UI) for any t ≥
Tf .6 However, as we show in this section, the infima of the infinitely many
points that verify the above play an important role in computing their pseudo-
inverses. We provide formal definitions below:

Definition 11 Let f ∈ U be UC, and let C := limt→+∞ f(t), C ∈ Q, be its
(ultimately) constant value. Then, we define

TC := inf{T | f(t) = C, ∀t ≥ T}

6The definition of UI includes also f(t) = −∞ for all t ≥ Tf . However, since the pseudo-inverse
operations only apply to non-decreasing functions, we do not consider such case here.

Springer Nature 2021 LATEX template

Extending the NC Algorithmic Toolbox for UPP Functions 21

to be the infimum of its pseudo-periodic starts.

Note that we use an infimum, instead of a minimum, because f may not
be right-continuous in TC . In that case f(t) = C, ∀t > TC , but f(TC) 6= C.

Definition 12 Let f ∈ U be UI. Then, we define:

TI := inf{T | f(t) = +∞, ∀t ≥ T},
and

L =


f(TI), if f(TI) < +∞,

f(T−I), if f(TI) = +∞ and TI > 0,
0, otherwise,

i.e., L is the rightmost finite value of f .

Again, we use the infimum to include functions such that f(t) = +∞, ∀t >
TI , but f(TI) = L < +∞.

As we assume in this section all functions to be non-decreasing, using
Definition 11 we have that a UC function is such that

f(t) < C, ∀t < TC ,

f(t) = C, ∀t > TC ,

whereas using Definition 12 a UI function is such that

f(t) < +∞, ∀t < TI ,

f(t) = +∞, ∀t > TI .

For these, some mathematical inconsistencies need be resolved first. For
example:

• if f is UC, Algorithm 2 would yield df−1
↓

= 0,
• if f is UI, it would yield Tf−1

↓
= +∞.

We treat these two cases in the following propositions.

Proposition 13 Let f ∈ U be a non-decreasing, UC function with TC ∈ Q+. If
f(TC) < C, its lower pseudo-inverse f−1↓ (y) is

f−1↓ (y) =


inf {x | f(x) ≥ y} = TC , if f(TC) < y < C,

inf {x | f(x) ≥ y} = TC , if y = C,

sup {x | f(x) < y} = +∞, if y > C,

and its upper pseudo-inverse f−1↑ (y) is

f−1↑ (y) =


inf {x | f(x) > y} = TC , if f(TC) < y < C,

sup {x | f(x) ≤ y} = +∞, if y = C,

sup {x | f(x) ≤ y} = +∞, if y > C.

Springer Nature 2021 LATEX template

22 Extending the NC Algorithmic Toolbox for UPP Functions

Otherwise, i.e., if f(TC) = C, its lower pseudo-inverse f−1↓ (y) is

f−1↓ (y) =


inf {x | f(x) ≥ y} ≤ TC , if y < C,

inf {x | f(x) ≥ y} = TC , if y = C,

sup {x | f(x) < y} = +∞, if y > C,

and its upper pseudo-inverse f−1↑ (y) is

f−1↑ (y) =


sup {x | f(x) ≤ y} ≤ TC , if y < C,

sup {x | f(x) ≤ y} = +∞, if y = C,

sup {x | f(x) ≤ y} = +∞, if y > C.

In other words, both pseudo-inverses are UI with TI = C.

Proposition 14 Let f ∈ U be a non-decreasing, UI function with TI ∈ Q+. Then,
its lower pseudo-inverse f−1↓ (y) is

f−1↓ (y) =


inf {x | f(x) ≥ y} < TI , if y < L,
inf {x | f(x) ≥ y} ≤ TI , if y = L,
inf {x | f(x) ≥ y} = TI , if y > L,

and its upper pseudo-inverse f−1↑ (y) is

f−1↑ (y) =


sup {x | f(x) ≤ y} < TI , if y < L,
sup {x | f(x) ≤ y} = TI , if y = L,
sup {x | f(x) ≤ y} = TI , if y > L.

In other words, both pseudo-inverses are UC with TC = L.7

Starting from the above results, one can derive the few modifications to the
algorithms described so far in this section to include these two corner cases.
We leave this simple (yet tedious) task to the interested reader.

5 Composition of UPP Functions
In this section, we discuss the composition operator for UPP functions, i.e.,
(f ◦g)(t) = f(g(t)). Some explanations are due regarding the physical meaning
of the above operation. In NC, functions are usually meant to map time to bits,
hence one might legitimately wonder what the physical meaning of composition
is in this setting. The answer largely depends on the object of a particular
study. For instance, in the already quoted literature examples that employ
composition (e.g., [23, 24]), g maps bits to bits. Specifically, f is the (strict)
service curve of a link managed by a round-robin-like scheduler, and g carves
out from f the (strict) service curve for the flow under analysis. As another

7The only exception being the (uninteresting) case of f such that f(0) > 0 and TI = 0, for
which f−1

↓ (y) = 0 ∀y ≥ 0.

Springer Nature 2021 LATEX template

Extending the NC Algorithmic Toolbox for UPP Functions 23

example, [3, p. 128] shows that the horizontal deviation in Equation (2) can
be computed as:

h(α, β)= sup
t≥0

{
β−1↓ (α(t))− t

}
. (15)

In the above, α maps time to bits, whereas β−1↓ maps bits to time. Note that
the above example also requires pseudo-inverses. We will show later on that
pseudo-inversion is required in the algorithm for the composition operator.

This section is organized as follows. In Section 5.1 we show that the com-
position of UPP functions is again UPP, and provide expressions to compute
its UPP parameters a priori. In Section 5.2 we discuss, first via an example
and then via pseudocode, how to compute the composition algorithmically. In
Section 5.3 we conclude with a summary of the by-curve algorithm and some
observations on the algorithmic complexity of this operator.

5.1 Properties of composition of UPP functions
We assume that the inner function g is not UI.8 We initially provide the result
for generic f and g. Later on, we show that, if either or both are UA or UC,
we can improve upon this result.

Theorem 15 Let f and g be two functions ∈ U with g being non-negative, non-
decreasing and not UI. Then, their composition h := f ◦ g is again a function ∈ U
with

Th = max
{
g−1↓ (Tf), Tg

}
, (16)

dh = pdf · dg · qcg , (17)

ch = qdf · pcg · cf , (18)

where pdf , pcg ∈ N0, and qdf , qcg ∈ N such that df =
pdf
qdf

, and cg =
pcg
qcg

. Note that
cg ≥ 0 as g is non-decreasing.

Proof Let kh ∈ N be arbitrary but fixed. Since g is UPP, it holds for all t ≥ Tg that
h(t+ kh · dh) = f (g(t+ kh · dh))

= f

(
g

(
t+ kh ·

dh
dg
· dg
))

(3)
= f

(
g(t) + kh ·

dh
dg
· cg
)
,

where we used the UPP property of g in the last line. Note that kg := kh · dhdg ∈ N,

since dh
dg

(17)
= pdf · qcg ∈ N, where we used the fact that df > 0. Moreover, since f is

UPP, too, we have under this additional assumption of g(t) ≥ Tf that

h(t+ kh · dh) = f

(
g(t) + kh ·

dh
dg
· cg
)

8If, for t > TI , g(t) = +∞ then f(g(t)) = limy→+∞ f(y). The fact that f is UPP does not
guarantee that such limit exists, e.g., when f is periodic.

Springer Nature 2021 LATEX template

24 Extending the NC Algorithmic Toolbox for UPP Functions

= f

(
g(t) + kh ·

dh · cg
dg · df

· df
)

(3)
= f(g(t)) + kh ·

dh · cg
dg · df

· cf

= h(t) + kh ·
dh · cg · cf
dg · df

(18)
= h(t) + kh · ch.

Note that kf := kh ·
dh·cg
dg·df ∈ N0, since

dh·cg
dg·df

(17)
=

pdf
df
· qcg · cg = qdf · pcg ∈ N0 and

we used that cg ≥ 0.
We set t ≥ Tg and g(t) ≥ Tf , thus ensuring that both f and g are in their periodic

part. Exploiting the notion of a lower pseudo-inverse and g being non-decreasing, the
latter expression implies that t ≥ g−1↓ (Tf) [28, p. 62]. Therefore, we require

t ≥ Th
(16)
= max

{
g−1↓ (Tf), Tg

}
.

This concludes the proof. �

Remark 16 Note that the above is also true for the particular case in which df ∈
N, cg ∈ N0. In fact, it follows that pdf = df and qcg = 1 and thus

dh
(17)
= pdf · qcg · dg = df · dg,

and the properties are then verified since dh
dg

= df ∈ N0 and dh·cg
dg·df = cg ∈ N0. The

corresponding ch is cf · cg.

It follows from Theorem 15 that, in order to compute the representation
Rh, we only need to compute SDh

h , where

Dh = [0, Th + dh[=
[
0,max

{
g−1↓ (Tf), Tg

}
+ pdf · dg · qcg

[
.

It follows that
SDh

h = S
Df

f ◦ SDg
g ,

where
Dg = [0, Th + dh[,

Df =
[
g(0), g

(
(Th + dh)

−)] . (19)

The reasonDf needs to be right-closed is that SDg
g may end with a constant

segment. If this happens, ∃t ∈ Dg such that g(t) = g ((Th + dh)
−), thus we will

need to compute f
(
g
(
t
))

= f (g ((Th + dh)
−)), and that is in fact the right

boundary of Df . On the other hand, if SDg
g ends with a strictly increasing

segment, it is safe to have Df right-open.
Hereafter, we show that the above result can be improved when either or

both functions are UA. First, we consider the case when only g is UA.

Springer Nature 2021 LATEX template

Extending the NC Algorithmic Toolbox for UPP Functions 25

Proposition 17 Let f and g be two functions ∈ U that are not UI, with g being non-
negative, non-decreasing, UA, with ρg > 0 (hence not UC). Then, their composition
h := f ◦ g is again a function ∈ U with

Th = max
{
g−1↓ (Tf), Tg

}
,

dh =
df
ρg
, (20)

ch = cf . (21)

Proof Let kh ∈ N be arbitrary but fixed. Since g is assumed to be UA, it holds for
all t ≥ Th that

h(t+ kh · dh) = f (g(t+ kh · dh))
(4)
= f (g(Th) + ρg · (t+ kh · dh − Th))
= f

(
ρg · t+ g(Th)− ρg · Th + kh · df

)
(3)
= f (ρg · t+ g(Th)− ρg · Th) + kh · cf
= f (g(Th) + ρg · (t− Th)) + kh · cf
(4)
= f (g(t)) + kh · cf
= h(t) + kh · ch.

�

Again, in order to compute the representation Rh, we only need SDh

h , where

Dh = [0, Th + dh[=

[
0,max

{
g−1↓ (Tf), Tg

}
+
df
ρg

[
.

It follows that
SDh

h = S
Df

f ◦ SDg
g ,

where
Dg = [0, Th + dh[

(20)
=

[
0, Th +

df
ρg

[
,

Df =
[
g(0), g

(
(Th + dh)

−
)[

(20)
=

[
g(0), g

(
Th +

df
ρg

)[
= [g(0), g (Th) + df [.

(22)

Here, we observe that domain Df is smaller than the one obtained by applying
directly Theorem 15, due to the disappearance of a factor qdf ·pcg ≥ 1. In fact,
with Theorem 15 we would have:

Dg = [0, Th + dh[

Springer Nature 2021 LATEX template

26 Extending the NC Algorithmic Toolbox for UPP Functions

(17)
=
[
0, Th + pdf · dg · qcg

[
=

[
0, Th + qdf · pcg ·

df
ρg

[
,

Df =
[
g(0), g

(
(Th + dh)

−
)[

(17)
=
[
g(0), g

((
Th + pdf · dg · qcg

)−)[
=
[
g(0), g(Th) + qdf · pcg · df

[
.

As specified in the statement of Proposition 17, we exclude the case when g
is UC. This is because of Equation (20) where ρg is in the denominator, hence
cannot be zero. However, if g is UC, a stronger proposition can be found as
reported in Appendix D.

Next, we consider the case when only f is UA.

Proposition 18 Let f ∈ U be UA and g ∈ U be non-negative, non-decreasing and
not UI. Then, their composition h := f ◦ g is again ∈ U with

Th = max
{
g−1↓ (Tf), Tg

}
,

dh = dg, (23)
ch = cg · ρf . (24)

Proof Let kh ∈ N be arbitrary but fixed. Since f is assumed to be UA, it holds for
all t ≥ Th that

h(t+ kh · dh) = f (g(t+ kh · dh))
(3)
= f (g(t) + kh · cg)
(4)
= f(g(Th)) + ρf · (g(t) + kh · cg − g(Th))
= f(g(Th)) + ρf · (g(t)− g(Th)) + kh · cg · ρf
(4)
= f(g(t)) + kh · cg · ρf
= h(t) + kh · ch.

�

Again, for representation Rh, we only compute SDh

h , where

Dh = [0, Th + dh[=
[
0,max

{
g−1↓ (Tf), Tg

}
+ dg

[
.

It follows that
SDh

h = S
Df

f ◦ SDg
g ,

Springer Nature 2021 LATEX template

Extending the NC Algorithmic Toolbox for UPP Functions 27

where
Dg = [0, Th + dh[

(23)
= [0, Th + dg[,

Df =
[
g(0), g

(
(Th + dh)

−
)]

(23)
=
[
g(0), g

(
(Th + dg)

−
)]
.

(25)

Again, domain Dg is smaller than the one that Theorem 15 would yield, due to
the disappearance of a factor pdf · qcg ≥ 1. For comparison, Theorem 15 yields

Dg = [0, Th + dh[

(17)
=
[
0, Th + pdf · qcg · dg

[
,

Df =
[
g(0), g

(
(Th + dh)

−
)]

(17)
=
[
g(0), g

((
Th + pdf · dg · qcg

)−)]
.

When both functions are UA, we obtain a stronger result by showing that
the composition is UA again.

Proposition 19 Let f ∈ U and g ∈ U be UA functions with g being non-negative,
non-decreasing and not UI. Then, their composition h := f ◦ g is again UA with

Tah = max
{
g−1↓ (Taf), T

a
g

}
,

ρh = ρf · ρg. (26)

Proof If f is UI, the result is trivial. Let us assume that f is not UI. Define Tah :=

max
{
g−1↓ (Taf), T

a
g

}
. Then we have that, for any t ≥ Tah ,

h(t+ Tah) = f
(
g(t+ Tah)

)
(4)
= f

(
g(Tah) + ρg · (t− Tah)

)
(4)
= f(g(Tah)) + ρf ·

((
g(Tah) + ρg · (t− Tah)

)
− g(Tah)

)
= f(g(Tah)) + ρf · ρg · (t− Tah)
= h(Tah) + ρf · ρg · (t− Tah).

�

Considering Equation (19), we observe how taking these results into
account will yield tighter Df , Dg than what we obtain with Theorem 15.

Finally, we mention that, if either or both f and g are UC, then the com-
position can be simplified further, even with respect to the above properties.
We report the results in Appendix D.

Springer Nature 2021 LATEX template

28 Extending the NC Algorithmic Toolbox for UPP Functions

0 1 2 4

1

3

4

time

data

(a) Sf

0 1 4 6

2

4

time

data

(b) Sg

0 1 4 6

1

3

4

time

data

(c) Sf ◦ Sg

Fig. 7: Example of composition of two sequences.

5.2 By-sequence algorithm for composition
In this section, we discuss the by-sequence algorithm for the composi-
tion. Without loss of generality, we focus on sequences Sg, representing a
non-negative and non-decreasing function g over an interval [0, t[, and Sf ,
representing a function f defined over the interval [g(0), g(t−)].9 Then, Sh =
Sf ◦ Sg is the sequence representing h = f ◦ g over the interval [0, t[. We use
the example shown in Figure 7, where t = 6 and g(t−) = 4.

First, we consider the shape of f ◦ g on an interval]a, b[⊂ [0, t[, a, b ∈ Q+.
Consider the case in which, for this interval, there exist ρg, ρf ∈ Q+ so that

g(x) = g(a+) + ρg · (x− a), ∀x ∈]a, b[,

f(x) = f
(
g(a+)+

)
+ ρf ·

(
x− g(a+)

)
, ∀x ∈

]
g(a+), g(b−)

[
,

(27)

where we use the shorthand notation

f
(
g(a+)+

)
= lim
x→a+

f (g(x)) = lim
y→y0

f(y),

9We consider Df to be always right-closed since it yields the correct result for both cases
discussed in the previous section. The right boundary of Df is never used as a breakpoint in the
algorithm anyway, as imposed by the condition ym < g(b−) discussed below.

Springer Nature 2021 LATEX template

Extending the NC Algorithmic Toolbox for UPP Functions 29

with y0 := limx→a+ g(x).
More broadly speaking, we have segment of g mapping to a segment of f .

In the example of Figure 7,]4, 6[is such an interval. Then, in this interval we
can apply the chain rule and find that h′(x) = f ′(g(x)) · g′(x) = ρg · ρf for all
x ∈]a, b[. Thus, h is also a segment on]a, b[.

If either of the equations in (27) does not apply, it means that one function
has one or more breakpoints over this interval. Assume initially that this is g.
Let this finite sets of breakpoints be t0, . . . , tn, with a < t0 < · · · < tn < b.
Then, the intervals]a, t0[, . . . ,]tn, b[verify the properties in Equation (27)
while for any breakpoint ti we can just compute f(g(ti)). A similar reason-
ing can be done for f : consider the finite set of breakpoints y0, . . . , ym, with
g(a+) < y0 < · · · < ym < g(b−). Then, we can use the lower pseudo-inverse of
g to find the corresponding ti = g−1↓ (yi).10 The set {t1, . . . , tn}∪

{
t1, . . . , tm

}
,

preserving the ascending order, defines a finite set of breakpoints for f ◦ g.
Then, we have again a finite set of points (ti, f(g(ti))), and open intervals for
which we compute h as a segment with ρh = ρf ·ρg. In the example of Figure 7,
]0, 4[is such an interval:

• for Sg we find the set {t1 = 1};
• for Sf we find the set {y1 = 1} →

{
t1 = 1

2

}
;

• the combined set of breakpoints is then
{

1
2 , 1
}
, and the open intervals

that verify Equation (27) is
{]

0, 12
[
,
]
1
2 , 1

[
,]1, 4[

}
.

By generalizing this reasoning, we obtain Algorithm 3.

Algorithm 3 Pseudocode for the composition of finite sequences
Input Two finite sequences of elements, Sf of f and Sg of g, so that Sg

defined on [0, a[and Sf defined on [g(0), g(a−)].
Return Composition Sh = Sf ◦ Sg consisting of a sequence of elements

O = {o1, . . . , om}.
1: Define an empty sequence of elements O := { }
2: Let T be an empty, but ordered set of distinct rationals
3: Let Pg be the set of points of Sg
4: for pi in Pg do
5: Add the time ti of pi to T
6: end for
7: Let Pf be the set of points of Sf , excluding the last point g(a−)
8: for pi in Pf do
9: Given time ti of pi, add ti = g−1↓ (ti) to T . preserving the order in T

10: end for
11: for each pair of consecutive (ti, ti+1) in T do
12: Append p := (ti, f(g(ti))) to O
13: Append s :=

(
ti, ti+1, f

(
g(t+i)

+
)
, f
(
g(t−i+1)

−)) to O
14: end for

10Following the discussion in Section 4, (Sg)
−1
↓ is sufficient for this computation.

Springer Nature 2021 LATEX template

30 Extending the NC Algorithmic Toolbox for UPP Functions

5.3 By-curve algorithm for composition
We can now discuss the by-curve algorithm, by combining the results presented
in Sections 5.1 and 5.2. In Algorithm 4 we show the pseudocode to compute
the composition h = f ◦ g of UPP functions f and g, in the most general
case. The analogous for the more specialized cases, i.e., ultimately affine or
ultimately constant operands, which here we omit for brevity, can be similarly
derived by adjusting the parameter and domain computations.

Algorithm 4 Pseudocode for composition of UPP functions.
Input Representation Rf of a UPP function f , consisting of sequence Sf

and parameters Tf , df and cf ; Representation Rg of a non-negative and non-
decreasing UPP function g, consisting of sequence Sg and parameters Tg, dg
and cg.

Return Representation Rh of h = f ◦ g.
1: Compute the UPP parameters for the result . Theorem 15

2: Th ← max
{
g−1↓ (Tf), Tg

}
3: dh ← pdf · dg · qcg
4: ch ← qdf · pcg · cf
5: Compute SDf

f and SDg
g . Equation (19)

6: Df ← [g(0), g ((Th + dh)
−) [

7: S
Df

f ← Cut(Rf , Df)
8: Dg ← [0, Th + dh[

9: S
Dg
g ← Cut(Rg, Dg)

10: Compute Sh ← S
Df

f ◦ SDg
g . Algorithm 3

11: Rh ← (Sh, Th, dh, ch)

Regarding the complexity of Algorithm 4, we note that the main cost is
computing Sh ← S

Df

f ◦ SDg
g . Since Algorithm 3 is a linear scan of SDf

f and

S
Dg
g , the resulting complexity is O

(
n
(
S
Df

f

)
+ n

(
S
Dg
g

))
. Note that given the

expressions in Theorem 15, this computational cost highly depends on the
numerical properties of the operands, i.e., numerators and denominators of
UPP parameters, rather than simply the cardinalities of Rf and Rg. Thus,
using the specialized properties of Propositions 17 to 19 yields performance
improvements, since Df and Dg are smaller.

We remark again that the result of the composition may have a non-
minimal representation (see the discussion at the end of Section 4.1).

6 Proof of Concept
In this section, we show how the algorithms presented in this paper allow one
to replicate the result appeared in a recent NC paper [23].

Springer Nature 2021 LATEX template

Extending the NC Algorithmic Toolbox for UPP Functions 31

Table 2: Performance comparison of composition with and without UA opti-
mization.

Runtime Not optimized Optimized
75th percentile 1117.72 ms 0.67 ms
median 1105.01 ms 0.55 ms
25th percentile 1088.61 ms 0.50 ms

The algorithms described in this paper, including variants and corner
cases omitted for brevity, are implemented in the publicly available Nancy
NC library [30]. Nancy is a C# library implementing the UPP model and
its operators, as described in [19, 20]. Moreover, it implements state-of-the-
art algorithms that improve the efficiency of NC operators, described in [31],
and lower pseudo-inverse, upper pseudo-inverse and composition operators,
described in this paper. Nancy makes extensive use of parallelism. However,
the NC operators described in this paper are implemented as sequential.

As a notable example, we implemented the results from [23, Theorem 1],
which uses the composition operator, using the same parameters of the example
in [23, Figure 3]. The above theorem allows us to compute the service curve
for a flow served by an Interleaved Weighted Round-Robin scheduler, once
a) the weight of the flow; b) the minimum and maximum packet length for
each flow, and c) the (strict) service curve for the entire aggregate of flows
β(t) are known. The complete formulation of the theorem – which is rather
cumbersome – is postponed to Appendix E. For the purpose of this proof of
concept, the important bit is that computing the service curve of the flow
involves computing a function γi that takes into account flow i’s characteristics
(e.g., weight, packet lengths), and then, given β as the (strict) service curve of
the server regulated by IWRR, computing the (strict) per-flow service curve
for flow i as βi = γi ◦ β.11 In the example in [23, Figure 3], β is a constant-
rate service curve, thus UA, while γi is, in general, a UPP function. On the
one hand, this confirms that limiting NC algorithms to UA curves only is
severely constraining – in this example, one could not compute flow i’s service
curve without an algorithm that handles UPP curves. On the other hand, it
means that we can obtain the same result by applying both Theorem 15 and
its specialized version for UA inner functions Proposition 17, and that we can
expect the latter to be more efficient due to the tighter Df , as explained below
Equation (22).

Our experiments confirm the above intuition. We run the computation on
a laptop computer (i7-10750H, 32 GB RAM). As shown in Table 2, when using
Theorem 15, computing the result took a median of 1.11 seconds. On the other
hand, using Proposition 17 the same result is obtained in 0.55 milliseconds
in the median, an improvement of three orders of magnitude. Listing 1 and
Figure 8 report, respectively, the code used and the resulting plot.

11Recall that composition requires the lower pseudo-inverse of the inner function to be
computed, hence this example makes use of both the algorithms presented in this paper.

Springer Nature 2021 LATEX template

32 Extending the NC Algorithmic Toolbox for UPP Functions

Listing 1 Code used to replicate the results of [23, Theorem 1].
var weights = new []{4, 6, 7, 10};
var l_min = new []{4096, 3072, 4608, 3072};
var l_max = new []{8704, 5632, 6656, 8192};
var beta = new RateLatencyServiceCurve(

rate: 10000, // 10 Mb/s, but using ms as time unit
latency: 0

);
var unit_rate = new RateLatencyServiceCurve(1, 0);

int Phi_i_j(int i, int j, int x) {...}

int Psi_i(int i, int x) {...}

int L_tot(int i) {...}

int i = 0; // the flow of interest
var stairs = new List<Curve>();
for(int k = 0; k < weights[i]; k++)
{

var stair = new StairCurve(l_min[i], L_tot(i));
var delayed_stair = stair.DelayBy(Psi_i(i, k * l_min[i]));
stairs.Add(delayed_stair);

}
var U_i = Curve.Addition(stairs); // summation of min-plus curves
var gamma_i = Curve.Convolution(unit_rate, U_i);
var beta_i = Curve.Composition(gamma_i, beta);

Fig. 8: Plot of the resulting service curve βi.

It is worth noting that [24, Theorem 1] describes a similar result for the
Deficit Round-Robin scheduler, under similar hypotheses, still making use
of composition, with the outer curve being non-UA. The derivations in this
section apply to this case as well, with minimal obvious modifications. Several
other results in [24] make use of composition as well.

Springer Nature 2021 LATEX template

Extending the NC Algorithmic Toolbox for UPP Functions 33

7 Conclusions
Automated computation of Network Calculus operations is necessary to carry
out analyses of non-trivial network scenarios. Therefore, algorithms that trans-
form representations of operand functions into result functions are required
for each “useful” NC operator. Recently, pseudo-inverses and composition
operators have been repeatedly used in NC papers. To the best of our knowl-
edge, these operators lacked an algorithmic description that would allow their
implementation in software.

This paper fills the above gap, by providing algorithms for lower and upper
pseudo-inverses and composition of operators. We have presented algorithms
that work under general assumptions (i.e., UPP operands), as well as special-
ized ones that leverage the fact that operands are UA (or UC) to compute
results faster. We have discussed the complexity of these algorithms, as well as
corner cases, with a rigorous mathematical exposition. Beside the theoretical
contribution, we provided a practical one by including the above algorithms
(together with the others known from the literature) in an open-source free
library called Nancy. This allows researchers to experiment with our results to
study complex scenarios, or support the generation of novel theoretical insight.

Future work on this topic will include studying the computational and
numerical properties of NC operators. As the example in Section 6 shows (not
to mention those in [31], by the same authors), exploiting more knowledge on
the operands allows one to compute the same results via specialized versions
of the algorithms, often in considerably shorter times (some by orders of mag-
nitude). We believe that this is an avenue of research worth pursuing, with the
aim of enabling larger-scale real-world performance studies.

Acknowledgments. This work was partially supported by the Italian Min-
istry of Education and Research (MIUR) in the framework of the CrossLab
project (Departments of Excellence), and by the University of Pisa, through
grant “Analisi di reti complesse: dalla teoria alle applicazioni” - PRA 2020.

Compliance with Ethical Standards
The authors declare that they have no conflict of interest.

References
[1] Cruz, R.L.: A calculus for network delay, part I: Network elements

in isolation. IEEE Transactions on information theory 37(1), 114–131
(1991)

[2] Cruz, R.L.: A calculus for network delay, part II: Network analysis. IEEE
Transactions on information theory 37(1), 132–141 (1991)

[3] Le Boudec, J.-Y., Thiran, P.: Network Calculus: a Theory of Deterministic
Queuing Systems for the Internet. Springer, Berlin, Germany (2001)

Springer Nature 2021 LATEX template

34 Extending the NC Algorithmic Toolbox for UPP Functions

[4] Chang, C.-S.: Performance Guarantees in Communication Networks.
Springer, New York, USA (2000)

[5] Le Boudec, J.-Y.: Application of network calculus to guaranteed service
networks. IEEE Transactions on Information theory 44(3), 1087–1096
(1998)

[6] Firoiu, V., Le Boudec, J.-Y., Towsley, D., Zhang, Z.-L.: Theories and
models for internet quality of service. Proceedings of the IEEE 90(9),
1565–1591 (2002)

[7] Le Boudec, J.-Y.: Application of network calculus to guaranteed service
networks. IEEE Transactions on Information Theory 44(3), 1087–1096
(1998). https://doi.org/10.1109/18.669170

[8] Bennett, J.C., Benson, K., Charny, A., Courtney, W.F., Le Boudec,
J.-Y.: Delay jitter bounds and packet scale rate guarantee for expe-
dited forwarding. IEEE/ACM Transactions on networking 10(4), 529–540
(2002)

[9] Fidler, M., Sander, V.: A parameter based admission control for differen-
tiated services networks. Computer Networks 44(4), 463–479 (2004)

[10] Schmitt, J.B., Roedig, U.: Sensor network calculus–a framework for worst
case analysis. In: International Conference on Distributed Computing in
Sensor Systems, pp. 141–154 (2005). Springer

[11] Charara, H., Scharbarg, J.-L., Ermont, J., Fraboul, C.: Methods for
bounding end-to-end delays on an AFDX network. In: 18th Euromicro
Conference on Real-Time Systems (ECRTS’06), p. 10 (2006). IEEE

[12] Bauer, H., Scharbarg, J.-L., Fraboul, C.: Worst-case end-to-end delay
analysis of an avionics AFDX network. In: 2010 Design, Automation &
Test in Europe Conference & Exhibition (DATE 2010), pp. 1220–1224
(2010). IEEE

[13] Zhang, J., Chen, L., Wang, T., Wang, X.: Analysis of TSN for industrial
automation based on network calculus. In: 2019 24th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA),
pp. 240–247 (2019). IEEE

[14] Maile, L., Hielscher, K.-S., German, R.: Network Calculus results for
TSN: An introduction. In: 2020 Information Communication Technologies
Conference (ICTC), pp. 131–140 (2020). IEEE

[15] Zhao, L., Pop, P., Zheng, Z., Daigmorte, H., Boyer, M.: Latency analysis
of multiple classes of AVB traffic in TSN with standard credit behavior

https://doi.org/10.1109/18.669170

Springer Nature 2021 LATEX template

Extending the NC Algorithmic Toolbox for UPP Functions 35

using Network Calculus. IEEE Trans. Ind. Electron. 68(10), 10291–10302
(2021). https://doi.org/10.1109/TIE.2020.3021638

[16] Rehm, F., Seitter, J., Larsson, J.-P., Saidi, S., Stea, G., Zippo, R., Ziegen-
bein, D., Andreozzi, M., Hamann, A.: The road towards predictable
automotive high-performance platforms. In: 2021 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pp. 1915–1924 (2021).
IEEE

[17] Andreozzi, M., Conboy, F., Stea, G., Zippo, R.: Heterogeneous systems
modelling with adaptive traffic profiles and its application to worst-case
analysis of a DRAM controller. In: 2020 IEEE 44th Annual Computers,
Software, and Applications Conference (COMPSAC), pp. 79–86 (2020).
IEEE

[18] Boyer, M., Graillat, A., de Dinechin, B.D., Migge, J.: Bounding the
delays of the MPPA network-on-chip with network calculus:models and
benchmarks. Perform. Evaluation 143, 102–124 (2020). https://doi.org/
10.1016/j.peva.2020.102124

[19] Bouillard, A., Thierry, É.: An algorithmic toolbox for network calculus.
Discrete Event Dynamic Systems 18(1), 3–49 (2008)

[20] Bouillard, A., Boyer, M., Le Corronc, E.: Deterministic Network Calculus:
From Theory to Practical Implementation. Wiley, Hoboken, NJ (2018)

[21] Bouillard, A., Cottenceau, B., Gaujal, B., Hardouin, L., Lagrange, S.,
Lhommeau, M., Thierry, E.: COINC library: a toolbox for the network
calculus

[22] RealTime-at-Work: RTaW-Pegase (min,+) library. https://www.
realtimeatwork.com/rtaw-pegase-libraries/. Accessed: 2022-04-05

[23] Tabatabaee, S.M., Le Boudec, J.-Y., Boyer, M.: Interleaved Weighted
Round-Robin: A Network Calculus Analysis. IEICE Transactions on
Communications 104(12), 1479–1493 (2021)

[24] Tabatabaee, S.M., Le Boudec, J.-Y.: Deficit round-robin: A second net-
work calculus analysis. IEEE/ACM Transactions on Networking (2022)

[25] Mohammadpour, E., Stai, E., Boudec, J.-Y.L.: Improved delay bound for
a service curve element with known transmission rate. IEEE Networking
Letters 1(4), 156–159 (2019)

[26] Mohammadpour, E., Stai, E., Boudec, J.-Y.L.: Improved Network
Calculus delay bounds in Time-Sensitive Networks. arXiv preprint
arXiv:2204.10906 (2022)

https://doi.org/10.1109/TIE.2020.3021638
https://doi.org/10.1016/j.peva.2020.102124
https://doi.org/10.1016/j.peva.2020.102124
https://www.realtimeatwork.com/rtaw-pegase-libraries/
https://www.realtimeatwork.com/rtaw-pegase-libraries/

Springer Nature 2021 LATEX template

36 Extending the NC Algorithmic Toolbox for UPP Functions

[27] IEEE: Time-sensitive networking (TSN) task group. [Online]. https://1.
ieee802.org/tsn/. Accessed: 2022-05-16

[28] Liebeherr, J.: Duality of the max-plus and min-plus network calculus.
Foundations and Trends in Networking 11(3-4), 139–282 (2017). https:
//doi.org/10.1561/1300000059

[29] Pollex, V., Lipskoch, H., Slomka, F., Kollmann, S.: Runtime improved
computation of path latencies with the real-time calculus. In: Proceedings
of the 1st International Workshop on Worst-Case Traversal Time, pp.
58–65 (2011)

[30] Zippo, R., Stea, G.: Nancy: an efficient parallel Network Calculus library.
http://arxiv.org/abs/2205.11449 (2022)

[31] Zippo, R., Stea, G.: Computationally efficient worst-case analysis of flow-
controlled networks with Network Calculus. https://arxiv.org/abs/2203.
02497 (2022)

[32] Boyer, M., Stea, G., Sofack, W.M.: Deficit Round Robin with net-
work calculus. In: 6th International ICST Conference on Performance
Evaluation Methodologies and Tools, Cargese, Corsica, France, October
9-12, 2012, pp. 138–147 (2012). https://doi.org/10.4108/valuetools.2012.
250202. https://doi.org/10.4108/valuetools.2012.250202

[33] Bondorf, S., Schmitt, J.B.: The DiscoDNC v2 – A Comprehensive Tool for
Deterministic Network Calculus. In: Proc. of the International Conference
on Performance Evaluation Methodologies and Tools. ValueTools ’14, pp.
44–49 (2014). https://dl.acm.org/citation.cfm?id=2747659

[34] Guan, N., Yi, W.: Finitary real-time calculus: Efficient performance anal-
ysis of distributed embedded systems. In: 2013 IEEE 34th Real-Time
Systems Symposium, pp. 330–339 (2013)

[35] Lampka, K., Bondorf, S., Schmitt, J.B., Guan, N., Yi, W.: Generalized
Finitary Real-Time Calculus. In: Proc. of the 36th IEEE International
Conference on Computer Communications (INFOCOM 2017) (2017)

https://1.ieee802.org/tsn/
https://1.ieee802.org/tsn/
https://doi.org/10.1561/1300000059
https://doi.org/10.1561/1300000059
http://arxiv.org/abs/2205.11449
https://arxiv.org/abs/2203.02497
https://arxiv.org/abs/2203.02497
https://doi.org/10.4108/valuetools.2012.250202
https://doi.org/10.4108/valuetools.2012.250202
https://doi.org/10.4108/valuetools.2012.250202
https://dl.acm.org/citation.cfm?id=2747659

Springer Nature 2021 LATEX template

Extending the NC Algorithmic Toolbox for UPP Functions 37

A Properties of Ultimately Affine (UA)
Functions

Proposition 20 A function f ∈ U is Ultimately Affine (UA) (defined in
Equation (4)) iff there exist T ∈ Q+, σ, ρ ∈ Q such that either

f(t) = ρt+ σ ∀t ≥ T (28)

or if f(t) = −∞ or f(t) = +∞ for all t ≥ T .

Proof The proof is trivial for f being −∞ or +∞ for all t ≥ T . Therefore, we limit
ourselves to the cases of f being finite.

“⇒”
Let f be UA. Define T := Taf , σ := f

(
Taf

)
− ρf · Taf and ρ := ρf . Then, it holds for

all t ≥ T that

f(t)
(4)
=
(
f
(
Taf
)
− ρf · Taf

)
+ ρf · t = σ + ρ · t.

“⇐” Assume f to verify the condition in Equation (28). Therefore, assume that
f(t) = ρt+ σ for all t ≥ T . Define Taf := T , ρf := ρ. Then for all t ≥ Taf

f(t) = f
(
(t− Taf) + Taf

)
(28)
= σ + ρf

(
(t− Taf) + Taf

)
=
(
ρfT

a
f + σ

)
+ ρf · (t− Taf)

(28)
= f(Taf) + ρf (t− Taf).

This concludes the proof. �

B Differences in Pseudo-Inverses Definitions
In [28, p. 60], which considers functions from R→ R, lower and upper pseudo-
inverses are introduced as

f−1↓ (y) = inf {t | f(t) ≥ y} = sup {t | f(t) < y} ,

f−1↑ (y) = sup {t | f(t) ≤ y} = inf {t | f(t) > y} .

However, when one considers a domain bounded from below by 0, such
as in our case, the rightmost equalities do not hold for y ≤ f(0). As a
counterexample, consider y = f(0). Then,

f−1↓ (y) = inf {x ≥ 0 | f(x) ≥ y} = 0,

f−1↓ (y) = sup {x ≥ 0 | f(x) < y} = sup {∅} = −∞.

Proposition 8 states a weaker form of equivalence for functions in U . We
provide here a proof.

Springer Nature 2021 LATEX template

38 Extending the NC Algorithmic Toolbox for UPP Functions

Proof The proof follows mostly along the lines of Lemma 3.2 in [20, pp. 46].12

1. Lower pseudo-inverse: first, note that {t ≥ 0 | f(t) < y} and {t ≥ 0 | f(t) ≥ y}
form a partition of Q+. Moreover, as f is non-decreasing and y > f(0),
{t ≥ 0 | f(t) ≥ y} is a non-empty interval of the form [b,+∞[or]b,+∞[for some
b > 0. As a consequence, {t ≥ 0 | f(t) < y} is a non-empty interval of the form
[0, b[or [0, b]. Thus, we have b = inf {t ≥ 0 | f(t) ≥ y} = sup {t ≥ 0 | f(t) < y}.

2. Upper pseudo-inverse: for y > f(0), the proof is the almost same as in 1., we
just replace {t ≥ 0 | f(t) < y} by {t ≥ 0 | f(t) ≤ y} and {t ≥ 0 | f(t) ≥ y} by
{t ≥ 0 | f(t) > y}. Then, b = sup {t ≥ 0 | f(t) ≤ y} = inf {t ≥ 0 | f(t) > y}.
Next, consider the case y = f(0). Let us define t1 := sup {t ≥ 0 | f(t) = f(0)} ∈
Q+ ∪ {+∞}. It holds that

sup {t ≥ 0 | f(t) ≤ y} = sup {t ≥ 0 | f(t) ≤ f(0)}
= t1

as well as

inf {t ≥ 0 | f(t) > y} = inf {t ≥ 0 | f(t) > f(0)}
= inf {t ≥ t1 | f(t) > f(0)}
= t1,

where we used in the second line that t1 is a lower bound for the set
{t ≥ 0 | f(t) > f(0)}.

�

C Calculation of Lower and Upper
Pseudo-Inverses

We report here the rigorous mathematical derivations for cases c1-c8 in Table 1.

Point after segment (cases c1-c4)
In these cases we have, in general, an f such that

f(x) =


b1 + ρ (x− t1) , if t1 < x < t2,

b2, if x→ t−2 ,

b3, if x = t2.

Since f is non-decreasing, b1 + ρ (x− t1) ≤ b2 ≤ b3 for all x ∈]t1, t2[.
We then distinguish four cases based on two properties:

• Whether or not the segment is constant, i.e., ρ = 0→ b1 = b2;
• Whether or not there is a discontinuity at t2, i.e., b2 < b3.

12We note however that Lemma 3.2 in [20, pp. 46] is incomplete, since it does not account for
the case y ≤ f(0) – see our counterexample above.

Springer Nature 2021 LATEX template

Extending the NC Algorithmic Toolbox for UPP Functions 39

Case c1: ρ = 0 and b1 = b2 < b3 (constant segment followed by a
discontinuity).
It holds that

f−1↓ (y) =


inf {x | f(x) ≥ y} = t2, if b1 < y < f(t2) = b2,

inf

x | f(x) ≥ y︸︷︷︸
=b2

 = t2, if y = f(t2) = b2,
(29)

and

f−1↑ (y) =



sup

{
x | f(x) ≤

=b1︷︸︸︷
y

}
= t2, if y = b1 = f(t+1),

sup {x | f(x) ≤ y} = t2, if b1 = f(t+1) < y < f(t2),

inf

x | f(x)︸︷︷︸
=b2

> y

 = sup {x | f(x) ≤ y} = t2, if y = f(t2) = b2.

(30)

Case c2: ρ = 0 and b1 = b2 = b3 (constant segment without any
discontinuity).
It holds that

f−1↓ (y) = inf

x |
=b1︷︸︸︷
f(x) ≥ y

 = t1, if y = b1. (31)

However, we do not add a value as it is processed in the “segment after point”
section. Moreover,

f−1↑ (y) := sup

x | f(x)︸︷︷︸
=b1

≤ y

 = t2, if y = b1. (32)

Case c3: ρ > 0 and b2 < b3 (non-constant segment followed by a
discontinuity).

f−1↓ (y) =



inf {x | f(x) ≥ y} = t2, if y = b1 + r (t2 − t1) = f(t−2),

inf {x | f(x) ≥ y} = t2, if f(t−2) < y < f(t2) = b3,

inf

x | f(x) ≥ y︸︷︷︸
=b3

 = t2, y = f(t2) = b3,

(33)

Springer Nature 2021 LATEX template

40 Extending the NC Algorithmic Toolbox for UPP Functions

and

f−1↑ (y) =



inf {x | f(x) > y} = t2, if y = b1 + r (t2 − t1) = f(t−2),

inf {x | f(x) > y} = t2, if f(t−2) < y < f(t2) = b3,

inf

x | f(x) > y︸︷︷︸
=b3

 = t2, y = f(t2) = b3.

(34)

Case c4: ρ > 0 and b2 = b3 (non-constant segment without any
discontinuity).

f−1↓ (y) = inf

x | f(x) ≥ y︸︷︷︸
=b2

 = t2, y = f(t2) = b2, (35)

and

f−1↑ (y) = inf

x | f(x) > y︸︷︷︸
=b2

 = t2, y = f(t2) = b2. (36)

Segment after point (cases 5-8)
In these cases we have, in general, an f such that

f(x) =


b1, x = t1,

b2, x→ t+1 ,

b2 + ρ (x− t1) , t1 < x < t2.

We then distinguish four cases based on two properties:
• Whether or not the segment is constant, i.e., ρ = 0→ b2 = b3;
• Whether or not there is a discontinuity at t1, i.e., b1 6= b2.

Case c5: b1 < b2 = b3 and ρ = 0 (discontinuity followed by a constant
segment).
It holds that

f−1↓ (y) =


inf {x | f(x) ≥ y} = sup {x | f(x) < y} = t1, if b1 < y < f(t+1) = b2,

inf

x | f(x) ≥ y︸︷︷︸
=b2

 = t1, if y = f(t+1) = b2,

(37)

Springer Nature 2021 LATEX template

Extending the NC Algorithmic Toolbox for UPP Functions 41

and

f−1↑ (y) =


inf {x | f(x) > y} = sup {x | f(x) ≤ y} = t1, if b1 < y < f(t+1) = b2,

inf {x | f(x) > y} = sup

x | f(x) ≤ y︸︷︷︸
=b2

 = t2, if y = f(t+1) = b2.

(38)

Case c6: b1 = b2 = b3 and ρ = 0 (no discontinuity and a constant
segment).
Then it holds that

f−1↓ (y) = inf

x |
=b1︷︸︸︷
f(x) ≥ y

 = t1, if y = b1. (39)

However, we do not add a value as it is processed in the “point after segment”
section. Moreover,

f−1↑ (y) := sup

x | f(x)︸︷︷︸
=b1

≤ y

 = t2, if y = b1. (40)

Case c7: b1 < b2 and ρ > 0 (discontinuity followed by a
non-constant segment).
We have

f−1↓ (y) =



inf {x | f(x) ≥ y} = t1, if b1 < y < f(t−1) = b2,

inf

x | f(x) ≥ y︸︷︷︸
=b2

 = t1, if y = f(t−1) = b2,

inf {x | b2 + ρ (x− t1) ≥ y} = t1 +
y−b2
ρ , if b2 < y < b3,

(41)
and

f−1↑ (y) =



inf {x | f(x) > y} = t1, if b1 < y < b2,

inf {x | f(x) > y} = sup

x | f(x) ≤ y︸︷︷︸
=b2

 = t1, if y = b2,

inf {x | b2 + ρ (x− t1) > y} = t1 +
y−b2
ρ , if b2 < y < b3.

(42)

Springer Nature 2021 LATEX template

42 Extending the NC Algorithmic Toolbox for UPP Functions

Case c8: b1 = b2 and ρ > 0 (no discontinuity and non-constant
segment).
We have

f−1↓ (y) = inf {x | b1 + ρ (x− t1) ≥ y} = t1 +
y − b1
ρ

,

if b1 = f(t+1) < y < f(t−2) = b2,

(43)

and

f−1↑ (y) = inf {x | b1 + ρ (x− t1) > y} = t1 +
y − b1
ρ

,

if b1 = f(t+1) < y < f(t−2) = b2.

(44)

D Composition of Ultimately Constant (UC)
Functions

Proposition 21 Let f and g be two functions ∈ U that are not UI, with g being
non-negative, non-decreasing and UC. Then, their composition h := f ◦ g is again
UC with

Th = Tg. (45)

Proof For t ≥ Tg, it holds that

h(t) = f(g(t)) = f(g(Tg)) = h(Th).

�

Proposition 22 Let f be UC and g be a function ∈ U that is non-negative and
non-decreasing. Then, their composition h := f ◦ g is again UC with

Th = g−1↓ (Tf). (46)

Proof For t ≥ g−1↓ (Tf), it holds that

h(t) = f(g(t)) = f(Tf) = h(Th).

�

Proposition 23 Let f and g be UC functions, with g being non-negative and non-
decreasing. Then, their composition h := f ◦ g is again UC with

Th = min
{
Tf , g

−1
↓ (Tf)

}
. (47)

Proof The proof is simply a combination of the previous two propositions. �

Springer Nature 2021 LATEX template

Extending the NC Algorithmic Toolbox for UPP Functions 43

E Service Curve of a Flow in Interleaved
Weighted Round Robin

We report here the statement of Theorem 1 in [23], for ease of reference. We
slightly rephrased it to aid comprehension.

Theorem 24 (Strict Per-Flow Service Curves for IWRR) Assume n flows arriv-
ing at a server performing interleaved weighted round robin (IWRR) with weights
w1, . . . , wn. Let lmin

i and lmax
j denote the minimum and maximum packet size of the

respective flow. Let this server offer a super-additive strict service curve β to these
n flows. Then,

βi(t) := γi (β(t))

is a strict service curve for flow fi, where

γi(t) := β1,0 ⊗ Ui (t),

Ui(t) :=

wi−1∑
k=0

νlmin
i ,Ltot

([
t− ψi

(
klmin
i

)]+)
,

Ltot := wil
min
i +

∑
j:j 6=i

wj l
max
j ,

ψi(x) := x+
∑
j 6=i

φij

(⌊
x

lmin
i

⌋)
lmax
j ,

φij(p) :=

⌊
p

wi

⌋
wj +

[
wj − wi

]+
+min

{
(p mod wi) + 1, wj

}
,

β1,0 is a constant-rate function with slope 1, and the stair function νh,P (t) is defined
as

νh,P (t) := h

⌈
t

P

⌉
, for t ≥ 0.

	Introduction
	Network Calculus Basics
	Mathematical Background and Notation
	Lower and Upper Pseudo-Inverse of UPP Functions
	Properties of pseudo-inverses of UPP functions
	By-sequence algorithm for pseudo-inverses
	By-curve algorithm for pseudo-inverses
	Corner cases: UC and UI functions

	Composition of UPP Functions
	Properties of composition of UPP functions
	By-sequence algorithm for composition
	By-curve algorithm for composition

	Proof of Concept
	Conclusions
	Acknowledgments

	Properties of Ultimately Affine (UA) Functions
	Differences in Pseudo-Inverses Definitions
	Calculation of Lower and Upper Pseudo-Inverses
	Case c1: =0 and b1=b2<b3 (constant segment followed by a discontinuity).
	Case c2: =0 and b1=b2=b3 (constant segment without any discontinuity).
	Case c3: >0 and b2<b3 (non-constant segment followed by a discontinuity).
	Case c4: >0 and b2=b3 (non-constant segment without any discontinuity).
	Case c5: b1<b2=b3 and =0 (discontinuity followed by a constant segment).
	Case c6: b1=b2=b3 and =0 (no discontinuity and a constant segment).
	Case c7: b1<b2 and >0 (discontinuity followed by a non-constant segment).
	Case c8: b1=b2 and >0 (no discontinuity and non-constant segment).

	Composition of Ultimately Constant (UC) Functions
	Service Curve of a Flow in Interleaved Weighted Round Robin

