
Modeling and Performance Analysis of

Networks with Flow Transformations

Vom Fachbereich Informatik

der Technischen Universität Kaiserslautern

zur Verleihung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte

Dissertation

von

Hao Wang

Datum der wissenschaftlichen Aussprache: 24.07.2015

Dekan: Prof. Dr. Klaus Schneider

Prüfungskommission:

Vorsitz: Prof. Dr. Christoph Garth

Erster Berichterstatter: Prof. Dr. Jens Schmitt

Zweiter Berichterstatter: Prof. Dr. Florin Ciucu

D 386

Abstract

Data flows in modern networks have exhibited increasingly complex prospect
along with the evolving network infrastructures and emerging diverse appli-
cations. Performance evaluation must adequately consider this trend. The
tractable queueing network as a traditional theoretical tool for performance
evaluation can not satisfy the new requirement anymore. One reason is that
the important assumption of queueing theory, i.e. Poisson arrivals, does
not further hold accurate for many networks, within which the flows are
more bursty, self-similar, or long-range dependent. Many alternative method-
ologies to the classical queueing theory appeared. Network calculus, over
two decades after Cruz’s pioneer work in 1991, has established itself as one
promising theoretical tool for assessing this kind of networks. It can deal
with problems that are fundamentally hard for queueing theory based on the
fact that it works with (probabilistic) bounds rather than striving for exact
solutions.

The complexity of network flows attributes itself not only to the upgrad-
ing infrastructure and enlarging number of users but also to the operations
onto the flows caused by various algorithms, protocols, services, and even
network topologies. The flows might be altered due to the operations along
the path from source to destination, e.g., in a lossy network, being transcoded,
randomly routed, or somehow processed for certain purpose like improving
energy efficiency. This is called flow transformation. It is a great challenge
for the existing queueing methodologies, including network calculus. One
reason is, the basic assumption that the system is lossless when defining the
performance metric delay, does not hold anymore. The other is, usually these
flow transformations are random. This thesis addresses an extension of the
network calculus to deal with the random flow transformations and provides
the performance evaluation.

The thesis mainly comprises of three inter-connected parts. The first is
to develop the so-called stochastic data scaling elements to model the flow

i

transformation and derive the performance bounds. The main technique is,
by using the instrumental equivalent systems theory, which enables trans-
forming the service to the part that only the transformed fraction of the flow
may receive, we can reorder the series of the service and scaling elements
and thus guarantee a convolution-form service to the flow of interest. Ac-
cordingly, the delay bounds scale in O(n), where n is the number of nodes
the flow traverses. The second is to deepen the understanding of the mod-
els with a deconstruction perspective. We investigate a very important case
of flow transformation - demultiplexing, and conclude that under the FIFO
scheduling assumption the stochastic scaling effect allows a conversion from
demultiplexing of the flow to the virtual multiplexing of the subflows. The
third is to apply the models to two very important scenarios, unreliable links
with retransmissions and flows of variable length packets, in order to validate
the models and widen the scope of their applications.

ii

Zusammenfassung

Datenflüsse in modernen Netzwerken werden aufgrund der sich stets weiter
entwickelnden Infrastrukturen und der Vielzahl an neuen Anwendungen im-
mer komplexer. Dadurch wird auch die Leistungsbewertung solcher Netze
immer schwieriger und muss sich anpassen. Das klassische Modell der Leis-
tungsbewertung , das Warteschlangennetzwerk, kann diesen Anforderungen
nicht mehr genügen. Ein Grund dafür ist, dass die essentielle Annahme der
Poisson-verteilten Ankünfte für viele Netzwerke nicht mehr genau genug
ist, da Verkehr oftmals stoßweise auftritt und Eigenschaften wie Selbstähn-
lichkeit oder Langzeitkorrelationen besitzt. Aus diesem Grund haben sich
mehrere Alternativen zu der klassischen Warteschlangentheorie entwickelt.
Das Netzwerkkalkül ist eines davon und hat sich seit Cruz’s Pionierarbeit
von 1991 als vielversprechendes Werkzeug zur Leistungsbewertung solcher
Netzwerke etabliert. Durch das Verwenden von probabilistischen Schranken
kann das Netzwerkkalkül mit Netzwerken umgehen, bei denen die klassis-
che Warteschlangetheorie, die nach exakten Lösungen sucht, fundamentale
Probleme hat.

Die Komplexität der Datenflüsse kann aber nicht nur auf die Infrastruktur
und die Anwendungen zurückgeführt werden. Auch die Art der Operationen
auf dem Netzwerkverkehr durch verschiedene Algorithmen, Protokolle, Di-
enste und Topologien tragen einen erheblichen Teil dazu bei, da sie Flüsse
auf ihrem Weg durch das Netzwerk verändern. So können Daten verloren,
zufällig umgeleitet oder für bestimmte Anwendungen aufbereitet werden.
Diesen Vorgang nennt man Flusstransformation und er stellt eine große Her-
ausforderung für existierende Analysemethodiken (auch für das Netzwerk-
kalkül) dar. Ein Grund dafür ist, die Grundannahme (verlustfreies System)
für die Definition der Leistungsmetrik, Ver- zögerung, ist nicht mehr gehal-
ten. Der andere ist, in der Regel sind diese Flusstransformationen zufällig.
Diese Dissertation befasst sich mit einer Erweiterung des Netzwerkkalküls,
um genau diese zufälligen Flusstransformationen zu bewältigen, und analy-

iii

siert die Verzögerung sowie weitere Leistungsmetriken.
Die Arbeit besteht im Wesentlichen aus drei miteinander verbundenen

Teilen. Im ersten Teil wird das Netzwerkkalkül um sogenannte stochastis-
che Datenskalierungselemente erweitert, um die zufälligen Flusstransforma-
tionen zu modellieren und Leistungsschranken abzuleiten. Die schlüssel-
technique ist die Umwandlung von quivalenten Systemen. Damit sind die
Dienste zu den Teil, den die transformierte Flüssenteilen bekommen, auch
transformiert. Dementsprechend kann die Reihenfolge der Dienste und Skal-
ierungselemente geändert werden ohne dass das Netzwerk seine Faltungs-
form (d.h. die Ende-zu-Ende-Modellierbarkeit von Diensten der Flüsse durch
die (min,+)-Faltung) verliert. Diese ist wichtig, damit die Schranken für
Verzögerungen in O(n) skalieren, wobei n die Anzahl der Knoten ist, die
der Fluss durchquert. Im zweiten Teil dieser Arbeit werden die Modelle mit
einer Dekonstruktionsperspektive vertieft. Dazu wird der wichtige Transfor-
mationsfall Demultiplexing untersucht, wobei wir zu dem Ergebnis kommen,
dass unter der Annahme einer FIFO-Strategie, der stochastische Skalierungs-
effekt eine Umwandlung vom Demultiplexing eines Flusses zum virtuellen
Multiplexing von Unterflüssen erlaubt. Im dritten Teil der Arbeit werden die
Modelle auf zwei relevante Szenarien angewandt: unzuverlässige Verbindun-
gen mit erneuten Übertragungen und Flüsse mit variabler Paketlänge. Durch
diese Szenarien werden die entwickelten Modelle validiert und ihr erweitertes
Anwendungsgebiet demonstriert.

iv

Acknowledgements

On the completion of my dissertation, I would like to express my deepest
gratitude to all those whose kindness and advice have made this work possi-
ble.

First and foremost, I would like to give the special thanks to my super-
visor, Prof. Dr. Jens B. Schmitt, for his continuous encouragement, great
patience, excellent guidance, kind personality, and intelligent research skills.
His help covers every aspect beyond the research. It is impossible to finish
this dissertation without these helps. To be supervised by and work with him
is a great thing. I feel fortunate and happy to be his student, not only for the
master and PhD study but also for my whole life. I would like to give my
equivalently special thanks to another person who will have influence on my
whole career, my second supervisor, Prof. Dr. Florin Ciucu. His outstanding
research skills and elaborate research attitude influence me a lot. I also grate-
fully thank his special encouragement and strict guidance. Without these, this
dissertation would not be finished. The contribution of my supervisors to this
dissertation are also very straightforward, as the major results of it are the
product of our collaboration.

I would like to extend my gratitude to the chair of my defense committee,
Prof. Dr. Christoph Garth and the remaining members of my defense com-
mittee, whose thoughtful insights and suggestions invaluably improve this
dissertation. I feel honored to have them on my committee.

My sincere thanks also go to my dear past and present colleagues of
DISCO lab: Adam Bachorek, Michael Beck, Daniel Berger, Steffen Bon-
dorf, Babara Erlewein, Nicos Gollan, Ivan and Petra Martinovic, Wint Yi
Poe, Matthias Schäfer, Steffen Reithermann, and Matthias Wilhelm. The at-
mosphere of doing research at DISCO is fantastic. I will forever remember
our friendship and their help. I would like to express my special acknow-
ledgment to Steffen Reithermann. Without his tremendous help I may not
continue my research career in Germany.

v

I am also deeply grateful to TU Kaiserslautern, DFG, and AMSYS for
their financial support to this work.

Finally, I owe my loving thanks to my mom, dad, wife, and son. Their
unconditional support and care continuously encourage me to finish this dis-
sertation. I dedicate this dissertation to them.

vi

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Network Performance Modeling and Analysis 2
1.1.1 Related Queueing Theories 2
1.1.2 Network Calculus 4

1.2 Flow Transformations . 6
1.3 Thesis Contribution . 8
1.4 Thesis Organization . 9

2 Background on Network Calculus 11

2.1 Network Model . 11
2.2 Deterministic Network Calculus 15

2.2.1 Deterministic Arrival Curve 15
2.2.2 Deterministic Service Curve 16
2.2.3 Worst-case Analysis 19

2.3 Stochastic Network Calculus 25
2.3.1 Stochastic Bounds of Arrivals 26
2.3.2 Stochastic Service Curve and Dynamic Server 32
2.3.3 Stochastic Analysis 34

2.4 Express Flow Transformations in Network Calculus 43

3 Stochastic Data Scaling Element - Bounding Functions 51

3.1 Stochastic Data Scaling . 52
3.2 End-to-end Performance Bounds 58
3.3 Modeling Dynamic Demultiplexing 63

3.3.1 The Demultiplexer 63

vii

CONTENTS

3.3.2 Application 1: Load Balancing 64
3.3.3 Application 2: Lossy Links 65

3.4 Application: Delay Bounds under Uncertain Load Balancing 67
3.4.1 Scenario and Preliminaries 67
3.4.2 Comparison of Alternative Analyses 71

4 Stochastic Data Scaling Element - Process 77

4.1 Stochastic Data Scaling Element 78
4.1.1 Example: Markov-Modulated Scaling Processes . . 87

4.2 Commutation . 92
4.3 End-to-End Delay Bounds 94

4.3.1 Transformation in Convolution-Form 94
4.3.2 Alternative Node-by-Node Analysis 100

4.4 Numerical Evaluation . 103

5 Deconstruction of Stochastic Data Scaling Element 109

5.1 A Novel Model for Flow Demultiplexing 110
5.2 Single Node Deconstruction: Main Idea 113
5.3 Two Nodes Deconstruction and Delay Bounds 115
5.4 Delay Bounds Comparison 120

5.4.1 MGF Bounds of the Arrivals and the Scalings 120
5.4.2 Delay Bounds: Numerical Examples 122

5.5 N Nodes Deconstruction 126

6 Scaling Element for Unreliable Links with Retransmissions 129

6.1 A Model of an Unreliable Link with Retransmissions 130
6.2 End-to-End Performance Bounds 132

6.2.1 Modeling a Binary Symmetric Channel (BSC) . . . 132
6.2.2 Arrival Curves for Retransmission Flows 133
6.2.3 Performance Bounds 139

6.3 Numerical Evaluation . 141

7 Scaling Element for Variable Length Packet Transmissions 145

7.1 Modeling the Demultiplexing of Variable Length Packet Flows 146
7.2 Delay Bounds of a Network with Flow Demultiplexing . . . 148

7.2.1 Observing the Packet Flow 149
7.2.2 Observing the Original Bit Flow with Packetizers . . 150

7.3 Numerical Evaluation . 160

viii

CONTENTS

8 Conclusions and Future Work 165

8.1 Conclusions . 165
8.2 Future Work . 166

Index 169

Bibliography 171

Curriculum Vitae 187

ix

List of Figures

2.1 General network model. 12
2.2 Network model simplifications. 13
2.3 Backlog and delay at time t. 14
2.4 Backlog bound and delay bound. 20
2.5 Network service curve. 22
2.6 Data scaling element. 43
2.7 Alternative systems. 45
2.8 A network model with servers and scaling elements. 46

3.1 Stochastic scaling element. 52
3.2 Alternative systems under stochastic setting. 53
3.3 A n nodes tandem network traversed by a flow of interest. . 58
3.4 The demultiplexer. 64
3.5 A load balancing model. 65
3.6 Load balancing from the perspective of subflow i. 65
3.7 A tandem network with lossy links. 66
3.8 A tandem network with lossy links and retransmissions. . . . 66
3.9 Network scenario of load-balancing. 68
3.10 Full binary tree. 69
3.11 Subflow from full binary tree. 69
3.12 Comparison of moving the scalers to the ingress and egress. 73
3.13 Comparison of node-by-node and end-to-end analyses. . . . 74
3.14 Comparison of ideal, deterministic, and stochastic scalings. . 74

4.1 Scaling element with arrival and scaled processes. 79
4.2 Scaling with a sum. 82
4.3 Scaling of a sum. 82
4.4 Concatenation of scaling elements. 83

xi

LIST OF FIGURES

4.5 Markov-modulated scaling process. 88
4.6 Dynamic server element. 93
4.7 Commuting dynamic server and scaling elements 93
4.8 Flow transformation network. 94
4.9 Apply commutation iteratively k times. 96
4.10 Flow transformation network - node-by-node analysis. . . . 101
4.11 MMOO arrivals and scalings. 104
4.12 Scaling of end-to-end delay bounds. 105
4.13 Arrival’s burstiness dominates scaling’s. 106

5.1 Two equivalent systems for the demultiplexing operation. . . 111
5.2 Network with two nodes and a demultiplexer. 115
5.3 Complementary MMOO scaling processes. 121
5.4 Bernoulli arrivals, Bernoulli scaling. 124
5.5 Bernoulli arrivals, MMOO scaling. 124
5.6 Poisson arrivals, Bernoulli scaling. 124
5.7 Poisson arrivals, MMOO scaling. 125
5.8 MMOO arrivals, MMOO scaling. 125
5.9 A flow demultiplexing network. 127

6.1 Model of an unreliable link with retransmissions. 131
6.2 Self-dependent equation system. 135
6.3 Illustration of the calculation for one retransmission flow. . . 136
6.4 Arrival, service curves, and delay bounds. 142
6.5 Delay bounds with retransmission attempts i (i = 1, 2, 3). . . 143
6.6 Delay bounds with changing maximum feedback delay. . . . 143

7.1 Network elements. 148
7.2 A model of network with packetized flow transformation. . . 149
7.3 Commutation of packetized service and packet scaling. . . . 151
7.4 Apply Lemma 8 for k times. 156
7.5 Delay bounds with Theorem 12, normalization, and simulation.161
7.6 Delay bounds considering packet scaling and with simulations. 162

xii

List of Tables

2.1 MGF Bounds of Arrivals. 31
2.2 Tail bound v.s. MGF bound. 32

4.1 Arrival and scaling processes. 104

xiii

Chapter 1

Introduction

Over thousands of years, people never stopped the steps in pursuit of higher
performance when transmitting information or goods. Although inventing
new form or raising the capacity of communication medias can improve the
performance, people often face the same situation - resource sharing, whether
the beacon fires were sharing the tower along the Great Wall, or the data are
sharing a server in today’s Internet. What people do is, queueing. The ways
of sharing and queueing are always crucial consideration for the performance
when people design, establish, and run a communication system. One indis-
pensable mathematical framework to analyze such resource sharing systems
with queues is the queueing theory. After Erlang’s foundation work [59, 60]
in telephone networks, queueing theory has been developed over a century.
It built up the basic models of analyzing many performance metrics and pro-
vided insights into many practical applications, among which a very impor-
tant one is for data networks [15]. Based on Jackson’s network [77], Klein-
rock conducted the first studies of queueing theory onto data networks in the
1960s [89] and established the theoretical foundation of the Internet. Along
that, the theory has also been generalized from the simple single-queue model
with Poisson arrivals/exponential service to a much more complex network of
queues model with various service time distributions, scheduling, topologies
and routing. The main property of this model framework is the product form
solution of the sojourn time/joint queue length distribution.

Despite the remarkable evolution, the product form queueing network
models have been consistently restricted to the fundamental assumptions like
Poisson traffic model or Markovian routing. For example modeling Inter-
net as a queueing system, the traffics sourced from different layers can be

1

1. Introduction

characterized by a high variability of models, more bursty, not only Poisson
[117]. To accurately predict the performance under these traffic assumptions,
some novel approximate theories were conceived, mostly over the last two
decades. One of them is the network calculus. Cruz’s has pioneered this
research through conceiving a deterministic network calculus in his seminal
work [50, 51]. Since then, network calculus has become a promising the-
ory for performance analysis of queueing systems and been receiving more
and more significant research attention. However, network calculus has its
own limitations, in particular when the traffic flows in the networks are al-
tered at some intermediate nodes along its transmission path related to the
network topologies, routing, the fluctuating system circumstances, the inter-
actions among traffic flows, or even certain predefined control scheme. We
name this traffic flow altering behavior a flow transformation. And we want
to understand the performance of the system, from the viewpoint basically
on the original flows only knowing the information about the altered ones or
vice versa, towards a more versatile analytical framework for the whole net-
work with large number of flows. These represent the basic motivation of this
thesis.

In the rest of this chapter, we first provide a brief overview of the queueing
theories, especially for data networks and of the emphasis on the network
calculus context. Then we provide the overview of the network calculus by
comparison and show the challenge when analyzing the networks with flow
transformations. Finally we present the main contribution and the structure
of this thesis.

1.1 Network Performance Modeling and Analy-

sis

1.1.1 Related Queueing Theories

Among the classical queueing theories, the class of the tractable queueing net-
work models has been extensively applied to efficiently represent the resource
sharing systems and accurately evaluate their performance. A queueing net-
work model is a collection of services with queues that provide service to a
collection of customers, whereby under certain assumptions, the stationary
joint queue length distribution can be expressed by the product of the indi-
vidual queue length distributions. This product form expression has played
a fundamental role in constructing the queueing network models. It yields
various interesting properties include the insensitivity [11], arrival theorem

2

1.1. Network Performance Modeling and Analysis

[93, 134], exact aggregation [83], and allows to develop computationally effi-
cient algorithms for analyzing performance measures such as the convolution
algorithm [30] and the mean value analysis [119]. Insensitivity states that
the stationary queue length distribution depends on the service time distribu-
tions only through the average, which enables us to only estimate the average
of the resource parameters. Exact aggregation supports us to do hierarchical
system analysis because we can aggregate parallel services into one single
service such that they behave the same in terms of certain set of performance
indices. Arrival theorem states that the stationary queue length distribution
seen at arrival times is the same as at arbitrary times. This facilitates the com-
putational transform from complex equations into convenient ones and leads
to the mean value analysis. The two algorithms have also promoted applying
the product form networks (especially in the 1970-80s), which not only could
be mathematically expressed in some convenient and possibly implicit form,
but more importantly could be numerically tractable.

There are three landmarks in the evolution of the product form networks
- Jackson’s network [77], Gordon and Newell (GN) networks [70], and Bas-
kett, Chandy, Muntz and Palacios (BCMP) [11] networks. Jackson’s theo-
rem for the networks of queues states that under Kleinrock’s independence
assumption [89], i.e., the interarrival time of packets and their sizes are in-
dependent, and some further assumptions, the stationary distribution of the
overall queue states in the network can be expressed as the production of the
single queues. This is the origin of the term product form queueing networks.
Knowing the queue distribution, from the Little’s law [104] we also know the
delay distribution. Besides these fundamental results, we classify further re-
sults that Jackson networks cover open exponential networks, i.e., with Pois-
son arrivals and exponential service times, first-in-first-out (FIFO) schedul-
ing, and arbitrary Markovian routing. The GN extension covers closed net-
works, whereas the much more substantial BCMP extension covers a mixture
of open and closed network scenarios, multiple classes of customers, and
various service time distributions. Further extensions cover state-dependent
routing [84, 140, 22], finite capacity queues and blocking [4, 10], batch ar-
rivals and service [73], or positive and negative arrivals [65].

Jackson network theories promote the adoption of the packets of bits in-
stead of circuit as the switching objects when designing a communication net-
works. The information are thus carried by the bits and transported over the
links within such data communication networks, where the links are usually
imperfect, i.e., they can delay, lose, or modify the information they transport.
All these theories also lay the theoretical foundation of various mechanisms
to share the imperfect bit carrier resources and capacities of the data commu-

3

1. Introduction

nication networks, and further provide to the network applications and users
a certain Quality of Service (QoS) they expect.

However, the Poisson assumption of the traffics restricts the application
of the queueing network theory. That became especially problematic with the
appearance of the high speed data communication networks, e.g., Internet,
and triggered an intense debate on the relevance of the queueing theory when
applying it to those networks. In the 1990s many publications studied the
network traffics and convincingly concluded that the properties of many net-
work traffics fundamentally differ from the Poisson traffic ([97]). The traffics
show more burstiness, self-similarity, or long-range dependency. In order to
avoid misleading results many development of new arrival models and analyt-
ical tools for queueing analysis were introduced. Markov modulated process
models have been proposed for voice and video sources ([56, 72, 106]). Frac-
tional Brownian motion (fBm) [113] or stable Lévy process [112] have been
proposed for the Internet traffics. The effective bandwidth theory ([76, 66,
71, 86]) has been proposed in order to provide a measure of resources usage,
adequately represent their trade-off, and account for their very generally vary-
ing statistical characteristics and the QoS requirements. These models used
a lot of mathematical techniques such as large-derivation [57], or extremal
properties of Gaussian processes [108]. These significant extension of the
tractable queueing systems has however come at the price of loosing math-
ematical exactness. For instance, the results of the effective bandwidth are
mostly large buffer or many sources asymptotic, which may be misleading
for finite regimes ([21, 38, 136, 1]), moreover, the results are mostly limited
to single node scenarios.

1.1.2 Network Calculus

Network calculus (NC) is a new theory for queueing analysis, which can cir-
cumvent the inherent difficulties of non-Poisson arrivals, and provide a well-
founded design of future networks , protocols, and mechanisms. It was con-
ceived by Cruz in the early 1990s [50, 51] in a deterministic framework, and
soon after by Chang [32] in a probabilistic framework. Subsequently, a sig-
nificant number of researchers have contributed to both the deterministic and
stochastic formulations of the network calculus (see the books of Chang [36],
Le Boudec and Thiran [95], and Jiang and Liu [82]).

Instead of using average and asymptotic values, like in product form net-
work model used performance indices, the key innovation of the network
calculus stands in the modeling of arrivals and services in terms of bounds
and the relaxation, i.e., bounds with probability. They are known as ar-

4

1.1. Network Performance Modeling and Analysis

rival curve and service curve. The consequences of these representations
are accordingly the worst-case and stochastic performance bounds. We de-
note these two branches as deterministic network calculus (DNC) and sto-

chastic network calculus (SNC). They provide comprehensive insights and
many interesting results for the analysis of queueing network systems. A
major result of network calculus is the model of the service curve (process)
[115, 116, 52, 54, 122, 2, 35, 94, 3] and the expression of the multi-node net-
work as a single-node case [95, 42]. Through using (min,+) algebra this
elegant reduction is easy to obtain. Given the arrival and departure processes
A(t) and D(t), the service curve process S(s, t) satisfies

D(t) ≥ A⊗ S(t) ,

where ⊗ denotes the (min,+) convolution defined for bivariate functions
f(s, t), g(s, t) as f ⊗ g(t) = inf0≤s≤t {f(0, s) + g(s, t)}. The n-nodes net-
work service curve consequently has a single-node representation

Snet = S1 ⊗ S2 ⊗ · · · ⊗ Sn ,

where Si(s, t) is the i-th node along the traversing path of the flow. Hence
the networks with their service curves expressed by this (min,+) convo-
lution form is referred to as convolution-form networks. This guarantees
several further results when analyzing the performance, like pay burst only
once (PBOO) [95, 126], pay multiplexing only once (PMOO) [131, 130], and
yields the exact scaling of queueing measures [26]. When some arrival burst
comes to a sequence of service nodes, the former nodes usually regulate the
burst such that the latter nodes will not experience it again. Node by node
performance analysis redundantly accounts for the burst at each node, while
using Snet avoids that and can pay burst only once. This is our main motiva-
tion to assure the convolution form expression of networks in this thesis.

The arrival and service curves have shown great modeling power. The
(deterministic and stochastic) arrival curve model can capture a broad class
of traffics, such as Markovian arrival processes [36], deterministically regu-
lated [98], fractional Brownian motion [120, 121], and the heavy-tailed and
self-similar [99]. The service curve models different capacity supply patterns
[95, 36, 82] and also various scheduling schemes (static priority (SP), earliest
deadline first (EDF), generalized processor sharing (GPS), first-in-first-out
(FIFO) [61, 98, 44, 101, 46]), even a generalized formulation [102].

The high modeling power of the network calculus has been transposed
into several important applications for network engineering problems: tradi-
tionally in the Internet’s Quality of Service proposals IntServ and DiffServ,

5

1. Introduction

and more recently in diverse environments such as wireless sensor networks
[91, 127, 132, 133, 68, 17], switched Ethernets [137], network coding [158],
power grid [153], software defined networks [9], Systems-on-Chip (SoC)
[31], or even to speed-up simulations [88].

In order to support the queueing network analysis, a number of software
tools exist that focus on certain aspects and implement related functionalities.
The DISCO network calculators [129, 69, 18, 14] developed in Java are well-
covered tools for both DNC and SNC. Most of the others are developed for
DNC. The CyNC toolbox [124, 123] is for the MATLAB/SimuLink environ-
ment, the RTC toolbox [54] in Matlab is for the real-time system analysis, the
COINC toolbox [144] in C++, and the related commercial SymTA/S toolbox
[74] provide the similar functionality.

In this thesis our main attention is the stochastic network calculus, whereas
we will not completely ignore its deterministic counterpart, because the re-
sults of the stochastic network calculus can carry over from the deterministic
calculus [28] using statistical characterizations of arrivals and services and
sample path arguments. An inherent concern of the stochastic network cal-
culus lies in the statistical dependency. Consequently, the stochastic network
calculus can be applied to network scenarios with complete statistical inde-
pendence of arrivals and service [36, 61], no independence assumptions of
arrivals and service across multiple network nodes [43], or even a mixture of
the two scenarios [41].

Recently, some other effort and attention are put to for example, improve
the accuracy of the analytical results [39, 48, 47], widen the scope of the
applications [5, 45, 105, 160], and improve the theory flexibility [13, 12].
This thesis also relates to these aspects.

1.2 Flow Transformations

An underlying assumption of the convolution-form expression of network ser-
vices is that the flows are transported unaltered over the networks, from the
perspective of the traversing nodes, the service should represent a lossless
system. However this can not always hold. How can we evaluate the per-
formance of the system on the transformed flows? In this thesis we study
this problem in the context of (stochastic) network calculus and try to provide
a general and insightful model. But actually, this challenging problem was
firstly studied in queueing theory. As an important case of flow transforma-
tion, data loss, has been modeled by the seminal work of Erlang [25]. This
work models the behaviour of a single telephone link. Later Kelly general-

6

1.2. Flow Transformations

ized this study to the loss network [85]. In a loss network, a data arriving
at one site might be lost (rejected), if there is no buffer on this site and all
the servers on it are busy. Although this can model many source sharing sys-
tems like telephone networks, ATM networks, broadband telecommunication
networks and many other networks, the cause of loss seems to be not well
suitable to many today’s cases, even simply for a call center, nowadays we
may more possibly wait online listening to some music instead of being re-
jected directly. Furthermore, assume that we set buffers in the loss network,
the overflow of buffer is, however, only one possible reason causing data loss.
There are many other reasons that cause data loss, like unreliable link or cer-
tain control scheme. Although there have also been some other works on
modeling the lossy channel, like Markov model ([67, 58, 152]), data loss is
just one case of flow transformation. Many modern networked and distributed
systems transform the flows for specific purposes or inherently in different
ways, e.g., a wireless sensor network which transforms the transported data
while delivering it to a sink node for energy-efficiency purposes, dynamic
routing, load balancing, P2P content distribution systems, media transcoding,
network coding, or distributed real-time systems. We should design a model
to generally express all these flow transformation behaviours. We can do it
both in product-form network based on queueing theory and in convolution-
form network based network calculus. In this thesis we focus on the latter.
Now the further question is: can the networks with flow transformations still
be expressed in convolution-form (for the purpose of PBOO)?

A novel extension of network calculus to deal with flow transformations
is introduced in purely deterministic settings [64] - the so-called data scaling
elements. It is simply defined as a wide-sense increasing function that scales
some amount of data to some other amount. Then by controlling the move-
ment of these elements in the network, the exact scaling properties of the
analytical performance bounds derived from the convolution-form represen-
tation are preserved. Although widening the scope of the network calculus,
this approach has limitations. An obvious one is that the deterministic model-
ing can very loosely capture the behavior of networks with stochastic settings.
One must accordingly resort to stochastic modeling techniques.

Other related attempts to deal with flow transformations have been pro-
posed. Chang introduced an element called router, which has a single data
input, a control input and an output [36]. The control input determines which
packets appear at the output. Cruz introduced an element called clipper [55],
which regulate the traffic according to required output specifications. Max-
iaguine et. al. introduced the so-called workload curves [109] into the real-
time calculus to translate an event stream into specific requirements for a

7

1. Introduction

certain resource. Jiang [154] attempted to use the entropy function to extract
information from the flows within the so-called information-driven networks.
There are also other interesting related works, packet curve for bounding
packetization [23], control function in software defined networks [9], lossy
server models [6, 81]. All these efforts that may be, or not, aware of their
modeling capacity for the flow transformation, have even bigger limitations
than the deterministic data scaling element - losing generality, ignoring the
convolution-form representation, or being only deterministic (we discuss the
details in Section 2.4).

1.3 Thesis Contribution

In spite of the previous fruitful attempts in the direction of modeling flow
transformations, the stochastic network calculus is still a great lack of the
wide-applicable model. This thesis contributes by introducing two forms of
the stochastic scaling element, in the framework of the stochastic network
calculus, to model the flow transformations in great generality. The new scal-
ing elements are carefully defined to achieve (1) convolution-form network
representations, and (2) a flexible means of capturing actual random transfor-
mation processes inside a network. As a consequence, the former allows us
to derive competitive performance bounds, in particular, by preserving the el-
egant scaling properties brought by the convolution-form expression and the
latter opens up the modeling scope widely.

First, we capture the stochastic behaviour of the flow transformation in
two forms: one is to define bounds (the stochastic scaling curves) such that the
sample paths (the scaling functions, which transform the data) are bounded
in probability; the other is to straightforward define the scaling operation as
a stochastic process that has effects on each data in the flow. Moreover, the
scaling elements own several useful algebraic properties, of which the most
important is that both forms facilitate the reordering of a series of service and
scaling elements, and then enable the system to transform from a multi-node
viewpoint into the convolution-form, i.e., the single-node viewpoint. Accord-
ingly, we pay burst only once and thus the performance bounds generally
scale in the order of the number of nodes.

Second, we review the definitions with a deconstruction viewpoint through
investigating an important case of the flow transformation, the demultiplex-
ing. We find out that under appropriate assumptions, e.g., FIFO scheduling,
we can move the scaling effect for a served flow to the correspondent arrival
flow and thus dismiss the scaling elements between the adjacent servers.

8

1.4. Thesis Organization

Third, we validate our theories by applying them to two hard, but very
important scenarios. One is to model the impairment of unreliable links with
stochastic scaling element and further describe the retransmission-based loss
recovery schemes as a fixed-point problem then solve it. The other is to model
the transformation of flows that consist of variable length packets, which usu-
ally applies to most of the networks.

1.4 Thesis Organization

We organize the rest of the thesis as follows.
In Chapter 2, we recall the background of the network calculus, with most

of the emphasis on those contents, which can support the coming chapters.
We structure this chapter according to the basic research branches of network
calculus, i.e., the deterministic network calculus and the stochastic network
calculus. As a motivation, we specifically introduce the state-of-the-art of the
flow transformation modeling techniques.

In Chapter 3, we extend the data scaling element in the direction of stoch-
astic sample path bounding by defining the stochastic scaling curves. We use
the sample path argument such that the results of the deterministic network
calculus can relatively easily carry over to these stochastic settings. An im-
portant theoretical result enables the reordering of a sequence of servers and
scalers and accordingly the expression of the network in convolution-form.
The reordering consists two directions, one is towards the ingress, the other
is towards the egress. Then we derive end-to-end performance bounds using
both analytical results and compare them with other analyses for the cases
like deterministic or ideal.

In Chapter 4, we introduce a different model of the stochastic data scal-
ing element. This definition is closely assembled with the flow description
together. We focus more on the scaled flows. By doing that, the utilization
of the statistical scaling characteristics is more flexible and effective. Differ-
ent from the previous model based on the sample path bounding curves, this
model assumes to know more information about the scaling process itself and
thus derives more accurate performance bounds. The theories also guarantee
the commutation of the servers and the scalers, such that we still preserve the
convolution-form expression of the networks. To validate the new model, we
compare the analytical results with the node-by-node analysis.

In Chapter 5, we review the previous two models and provide a decon-
struction of both definitions. We illustrate the viewpoint by analyzing the
important case of the flow transformation - demultiplexing. We show that

9

1. Introduction

the scaling effect that is used to model the demultiplexing operation, e.g.,
dynamic load balancing, can be moved to the arrival side as multiplexing.
The meaning is, under FIFO scheduling assumption, we can do the demulti-
plexing a little bit earlier, i.e., before being served. We then use the leftover
service for one of the later demultiplexed subflow and iteratively apply this
translation for a larger network scenario. We compare the results with those
from the previous chapter in the numerical examples.

In Chapter 6, we apply the stochastic data scaling viewpoint and the sto-
chastic scaling curves definition from respectively Chapter 4 and 3 to describe
the loss process in the unreliable links and further the whole link model with
retransmission-based loss recovery. Since retransmitted lost data can be lost
again, we face with a difficult fixed-point problem. To solve this, we first
calculate the arrival curves of the retransmitted flows with sample path argu-
ment, and then we apply the probabilities of each violation of the sample path
bounds to derive the stochastic performance bounds. To ease the exposition
we assume that the times of retransmission is limited. The numerical results
indicate that the retransmission number dominates the delay bounds, which
can be used as a reference in practice, i.e., to limit the times of retransmis-
sions.

In Chapter 7, we extend the stochastic data scaling element in variable
length data granularities, e.g., for the flows with variable length packets. To
preserve the convolution-form representation, we need to note the concate-
nated scaling elements, because for this case the scaled flows are very hard to
express. At the same time the commutation of the servers and the scalers as
well as the derivation of the end-to-end delay bounds are also influenced by
the varying packet sizes. The most difficult is that we can not simply ignore
the inherent dependency of the service times brought by the unnormalized
packet sizes. In this chapter, we address these problems and avoid the depen-
dency of the service times by limiting the packet sizes. As a comparison, we
adapt the results of Chapter 4 in the way we normalize the service capacity
by the packet sizes. The numerical results show the clear superiority of the
former one and also validate the bounds by simulation results.

In Chapter 8, we conclude this thesis and discuss the future work.

10

Chapter 2

Background on Network

Calculus

In this chapter, we introduce the fundamental results of the network calculus
that this thesis is based on and develops. We first describe the network mod-
els considered in the network calculus and this thesis. Next, we review the
necessary concepts and main results of the deterministic network calculus re-
spectively stochastic network calculus , which model the network elements
and provide insights of the system behavior, especially on the performance.
Then we discuss how to develop the network calculus to model the flow trans-
formation and some previous related work.

2.1 Network Model

The networks we study in this thesis are communication networks modeled
by a set of service nodes with queues connected by communication links
(see Figure 2.1). The service capacity of a node decides the rate at which
it processes the data. The information data are operated in packet switch
mode and routed from source to destination node after being served. In our
model, a “packet” stands for different data granularities like bit, word, frame,
cell, packet, or even infinite small. We do not limit the data granularity to a
discrete value, because at times the continuous data model is computationally
simpler and provides better abstraction, while at other times the discrete data
model does better. Accordingly we use both discrete and continuous time
models. And we assume the models start at time/data zero. In our model,

11

2. Background on Network Calculus

Figure 2.1: General network model.

we call the aggregation or fluid of arriving respectively departing data as data

flow or data traffic. We try to keep the network model simple but with wide
applicability, e.g., for different network layers.

Since the service capacity and the buffer for queueing are either expen-
sive or limited resources, we study the performance of a given communica-
tion network to see whether these resources are efficiently provisioned and
utilized under certain constraints like avoiding loss or limiting end-to-end de-
lay. With evaluating their joint performance we can quantifiablly compare
different network design alternatives and dimension the networks. We model
the ways of operating (switching, multiplexing and scheduling, demultiplex-
ing) the data and allocating the resources. We quantify the delays of the data
traversing from the input to the output ends of the network and the buffers
required at each node. Doing these we can discover the tradeoff among these
parameters with respect to the changing nature of data flows. However, in this
thesis we do not assume that the network inherently puts any constraints on
the delay and buffer, i.e., there is no predefined deadline and the buffer size
is infinite large. To summarize, we study the behavior mainly of the follow-
ing performance measures: delay, buffer, service capacity and the data flow
characteristics.

Another important issue is when analyzing networks we may meet differ-
ent kinds of topologies, which makes the analysis more complex. We simplify
our modeling by basically observing the data flow of interest. Therefore,
when traversing a larger network, it will face with a tandem of nodes, like
shown in Figure 2.1. Without restricting the topology, a tree or a feed-forward
topology is a simultaneously sweeping of any branching tandem nodes, while
a cycle means there exist some same nodes in the tandem nodes. We depict

12

2.1. Network Model

...

Figure 2.2: Network model simplifications.

these in Figure 2.2.

In order to evaluate the performance of either the discrete or the contin-
uous data/time network models, it is convenient to describe the data flows
by means of cumulating the amount of data units arriving at a node until
time t, t ≥ 0. We denote it as an arrival process A(t), which is a left con-
tinuous, nondecreasing stochastic process. By convention, A(0) = 0 and
the doubly-indexed form is A(s, t) := A(t) − A(s) for 0 ≤ s ≤ t, so,
A(t) = A(0, t). We also denote the instantaneous arrival data units in time
slot t as a(t) := A(t − 1, t). For a continuous time model, a(t) represents

the instantaneous arrival rate at time t, accordingly,A(s, t) =
∫ t

s
a(τ)dτ . We

apply similar definitions for the departure process D(t). A causality of A(t)
and D(t) holds for any time t, A(t) ≥ D(t), unless the flow is transformed
before departure. On the other hand, we describe the service provided by a
node in the similar way. We denote the cumulative service amount in time
interval [s, t] as S(s, t). A node has an infinite buffer and a scheduler.

Now, withA(t) andD(t) we can already represent the intuitive definitions
of the following performance measures: backlog and delay. We first define for
any time t ≥ 0 the backlog B(t) as the amount of data which are waiting in
the buffer together with those being served; the delayW (t) as the duration the
data experienced therein. Then the idea for representation is to view the node
as a black box. We assume that the node is a lossless system. The backlog
process of a node at time t is represented as the amount of data which arrived
at the node until time t but still not yet departed.

B(t) = A(t) −D(t) . (2.1)

If we further assume that the node schedules the data units locally FIFO, the
delay process at time t of the departing flow can be represented as the delay
experienced by a departing data at time t or the delay virtually experienced

13

2. Background on Network Calculus

Figure 2.3: Backlog and delay at time t.

by a virtual data at time t, although it does not exist at that time.

W (t) = inf{d : A(t− d) ≤ D(t)} . (2.2)

Alert reader may find that the perspective of the backlog process is intuitively
distinguished from the delay process. The former is a perspective from the
node, while the latter is mainly from the flow. In spite of that, as the de-
partures are the joint result of interacting the arrivals and the service, these
two processes are actually decided by both the service and the arrival flow.
With this consideration, it is flexible to choose alternative representation of
the delay process.

W (t) = inf{d : A(t) ≤ D(t+ d)} . (2.3)

Eq. (2.2) and Eq. (2.3) are not exactly the same. Eq. (2.2) is from the view-
point of the departure flow, whereas Eq. (2.3) is from the arrival. For a lossless
system, there is no difference for use. But it reveals some important mes-
sages, especially for analyzing the networks with flow transformations: we
must check on which side we want to observe the delays, because the flows
may be altered, then we should keep the losslessness for this flow throughout
its end-to-end path. In this thesis, we mainly use Eqs. (2.1) respectively (2.3)
as the definition of the backlog respectively delay process. They are depicted
in Figure 2.3.

Network calculus builds on the queueing network model and develops
its own system theoretic description of network elements. It characterizes
the traffic and the service with bounds and relates them to the backlog and the
delay bounds, and then, reveal the intrinsic dependencies among these system

14

2.2. Deterministic Network Calculus

parameters. In the following, we summarize the basic concepts and the main
results on the basis of two subclasses: deterministic network calculus and
stochastic network calculus.

2.2 Deterministic Network Calculus

Network calculus was conceived by Cruz in the early 1990s ([50, 51]), later
evolved into deterministic network calculus. The motivation is to model the
networks non-probabilistically such that it avoids the intractable exact analy-
sis of system parameters ([15]), since they are correlated.

2.2.1 Deterministic Arrival Curve

The original idea is on the traffic, i.e., without identifying the traffic as a
known stochastic process it is possibly “unknown”, and only satisfies certain
regularity constraints on the burstiness (see [50]). Defining these constraints,
we point out that it is convenient to directly observe each sample-path func-
tion of the traffic and describe its burstiness instead of using the stochastic
form, whereby deterministic network calculus uses the instrumental definition
of the set F of real-valued, non-negative, and wide-sense increasing functions
passing through the origin.

F =
{
f : R+ → R

+, ∀t ≥ s : f(t) ≥ f(s), f(0) = 0
}
.

In particular, the arrival and departure flows are represented as the arrival
function F (t) and the departure function F ′(t) in F . Note, we often use
functions F, F ′ instead of A,D to represent the arrival and departure flows in
deterministic network calculus. Now, the bounding function for the burstiness
of F (t) is defined as arrival curve (also known as envelope).

Definition 1. (Arrival Curve) Given a flow with input function F (t), a func-
tion α(t) ∈ F is an arrival curve for F (t) iff

∀t, s ≥ 0, s ≤ t : F (t)− F (s) ≤ α(t− s) . (2.4)

Note, because the departure flow from one node is often the arrival flow of
the next node, we call the envelope of the departure flow an arrival curve. An
arrival curve builds a bound on the burstiness of any time interval, and for the
same length of time intervals the bounds are the same, i.e., both F (t)− F (s)
and F (t + τ) − F (s + τ) are bounded by α(t − s). Arrival curves on one

15

2. Background on Network Calculus

hand describe the traffic flows, on the other hand, define new network ele-
ments which can regulate the traffic according to the constraints. When flows
Fi(t), i = 1, . . . , N are multiplexing at the same node, each has arrival curve

αi(t), the aggregated flow
∑N

i=1 Fi(t) has the arrival curve
∑N

i=1 αi(t).
An important example of arrival curve is the so-called (σ, ρ)-envelope. It

is defined for σ, ρ ≥ 0 by the affine function

α(t) = ρt+ σ ,

where ρ upper bounds the long term average rate of the flow and σ bounds
any instantaneous burstiness such that it lifts up the bound to allow all the
potential burstiness in any time interval. Note that, we may also use γr,b to
denote the affine function when discussing deterministic network calculus in
the following sections, where γr,b = rt + b if t > 0, otherwise 0. A more
intuitive interpretation is the buffered token-bucket. We extend this function
to a more general N -level form as we view it as N token-buckets

α(t) = min
1≤i≤N

{ρit+ σi} .

This concave function provides time varying constraints, especially for bound-
ing the long term decreasing arrival rates in increasing time intervals. This
is applied in some models like IntServ architecture of Internet [24], or Deter-
ministically Bounding INterval-length Dependent (D-BIND) model [90].

2.2.2 Deterministic Service Curve

For the purpose of the performance evaluation, especially to maintain the
black box viewpoint, deterministic network calculus also represents the un-

known service provided by a node with bounds - service curves.

Definition 2. (Service Curve) If the service provided by a system S for a
given input function F (t) results in an output function F ′(t), we say that S
offers a service curve β(t) if

F ′(t) ≥ inf
0≤s≤t

{F (s) + β(t− s)} . (2.5)

Note, the service curve is said to be exact if Eq. (2.5) holds with equality.
We view the server as a black box and only know its inputs and the outputs to-
gether with an abstract description to relate them. Sometimes we do not know
what really happened in the server, sometimes we do know some information.
A not very “black” example is the constant-rate server β(t) = rt with service

16

2.2. Deterministic Network Calculus

rate r > 0. In fact, instead of showing the service details, which is dependent
of the arrivals, it bounds the departures per time unit with r packets. This
node is called work conserving, since it is not idle if there are packets in the
buffer. Using Lindley’s equation [103]

B(t+ 1) = [B(t) + a(t+ 1)− r]
+
,

where [x]+ = max(0, x), we obtain for all t ≥ 0

F ′(t) = inf
0≤s≤t

{F (s) + r(t − s)} .

The constant-rate service has an exact service curve.

Another simple example is the impulse function δT (t) for t ≥ 0, T ≥ 0,
which is defined as δT (t) = 0, if 0 ≤ t ≤ T , otherwise δT (t) = ∞. We have

F ′(t) ≥ inf
0≤s≤t

{F (s) + δT (t− s)} =

{
F (t− T) if t ≥ T ,
0 otherwise .

From the definition of W (t) in Eq. (2.2) we get W (t) ≤ T . That means this
server delays any arrivals at most by T .

A more general example is the so-called rate-latency service curve βR,T (t)
= R[t− T]+ for some latency T ≥ 0. We interpret this service curve as that
the node is separated into tow concatenated nodes providing service curveRt
and δT .

By defining the service curve, network calculus relates the output of a
network system to the input and the service provided by the system. This
idea already existed in the traditional system theory, which was successfully
used to design electronic circuits. Given a simple circuit with input signal
x(t) ∈ R and impulse response h(t) for all t ≥ 0, the corresponding output
signal y(t) ∈ R is

y(t) =

∫ t

0

x(s)h(t − s)ds := x⊗ h(t) ,

where the operator ⊗ is referred as convolution. Review the service curve
definition Eq. (2.5), the main difference is that the operations are changed:
addition becomes infimum (denoted by ∧), multiplication becomes addition.
For those functions defined in F this change of operations actually means
the change of the algebraic structures - from (R ∪ {+∞},+,×) algebra to
(R∪{+∞},∧,+) algebra. And we re-define the convolution as the so-called
min-plus convolution on the new dioid, i.e., the min-plus algebra.

17

2. Background on Network Calculus

Definition 3. (Min-plus Convolution) The min-plus convolution of two func-
tions f, g ∈ F is defined for all t ≥ 0 to be

(f ⊗ g) (t) = inf
0≤s≤t

{f(t− s) + g(s)} .

With this definition we can represent the Eqs. (2.4) and (2.5) in the defi-
nitions of the arrival curve and the service curve.

F (t) ≤ F ⊗ α(t) , (2.6)

F ′(t) ≥ F ⊗ β(t) . (2.7)

Next we introduce a counterpart of the min-plus convolution, which is also
used to simplify the representation of some equations in the following chap-
ters.

Definition 4. (Min-plus Deconvolution) The min-plus deconvolution of two
functions f, g ∈ F is defined for all t ≥ 0 to be

(f ⊘ g) (t) = sup
u≥0

{f(t+ u)− g(u)} .

We also use the convolution and deconvolution defined on the max-plus

algebra to represent equations in this thesis. They are defined on the dioid
(R ∪ {+∞},∨,+), where ∨ denotes maximum.

Definition 5. (Max-plus Convolution and Deconvolution)

(f⊗̄g) (t) = sup
0≤s≤t

{f(t− s) + g(s)} , (∨,+ convolution) ,

(f⊘̄g) (t) = inf
u≥0

{f(t+ u)− g(u)} , (∨,+ deconvolution) .

Deterministic network calculus can also describe the upper bound on the
service, the so-called maximum service curve, denoted by γ(t), if F ′(t) ≤
F ⊗ γ(t) for all t ≥ 0. This maximum service curve is not that often used
in this thesis as the (minimum) service curve. Hence, when we say service
curve, that means minimum service curve in the rest of this thesis. We may
also omit the brackets around f ⊗ g and the other operations.

Furthermore, a class of network nodes offer strict service curve. We de-
fine busy period as the time interval in which the system always has positive
backlog.

Definition 6. (Strict Service Curve) A network node offers a strict service

18

2.2. Deterministic Network Calculus

curve β(t) to a flow, if during any busy period u, u ≥ 0 the output is at least
equal to β(u).

Note, a strict service curve is also a service curve, however, the converse
is not true. We will later introduce some properties that only hold with strict
service curve. The strict service curve is the minimum guaranteed service
amount during any busy period u. This is similar to the bounds on the arrivals
- we observe and describe the process itself. Consider a node that offers
a variable service capacity to a flow. We denote the cumulative capacities
using function C(t) =

∑t
i=0 c(i) for the time from 0 to t. These capacities

reflect the amount of data which can be (virtually) served by the node if the
according arrival data exist. If a fixed function β(t) satisfies C(t) − C(s) ≥
β(t − s) for all 0 ≤ s ≤ t that fall into a continuously busy period, then
β(t) is a strict service curve. Thus β(t) is also a service curve. Because in a
busy period the departures are equal to the cumulative service capacities, this
condition can also be equivalently expressed by F ′(t) − F ′(s) ≥ β(t − s).
The concept of variable capacity strict service curve potentially provides a
convenient way to construct service curve.

2.2.3 Worst-case Analysis

The outstanding fundamental results of the deterministic network calculus are
that it models the network services and offers worst-case analysis by deriving
the performance bounds. Arrival curve and the service curve facilitate the
derivation.

Deterministic Single Node Performance Bounds

The next theorem derives the dealy bound, backlog bound, and the bound,
i.e., arrival curve, of the output flow.

Theorem 1. (Performance Bounds) Consider a system S that offers a service

curve β(t) for any time t ≥ 0. Assume a flow F (t) traversing the system

has an arrival curve α(t). The output is F ′(t). Then we obtain the following

performance bounds for all t ≥ 0

backlog: B(t) ≤ (α⊘ β) (0) =: v(α, β) ,

delay: W (t) ≤ inf {t ≥ 0 : (α⊘ β) (−t) ≤ 0} =: h (α, β) ,

output (arrival curve α′ for F ′): α′ = α⊘ β .

Note, the backlog and the delay bounds are graphically interpreted as
the maximal vertical and the horizontal distances between arrival curve and

19

2. Background on Network Calculus

Figure 2.4: Backlog bound and delay bound.

service curve, v and h. See Figure 2.4 for the illustration. These bounds are as
tight as α(t) and β(t) are ([95]), if α(t) is sub-additive, α(0) = 0 and β(0) =
0. That means, there exists such a causal system such that B(t) = v(α, β)
and W (t) = h(α, β) for some t ≥ 0 respectively. We next sketch the proof
of the backlog bound, because we use the similar argument in many parts of
this thesis. We first denote the vertical distance of two functions f(t) and g(t)
at some index t as v(f(t), g(t)). Then v(f, g) := supt≥0v(f(t), g(t)). Using
the definition of backlog in Eq. (2.1) we have

B(t) = F (t)− F ′(t)

≤ F (t)− inf
0≤s≤t

{F (s) + β(t− s)}

= sup
0≤s≤t

{F (t)− F (s)− β(t− s)}

≤ sup
0≤s≤t

{α(t− s)− β(t− s)}

= sup
0≤s≤t

{v(α(t− s), β(t− s))}

≤ v(α, β) .

We can see that the backlog bound originates from the bounds on the service
and its arrivals. The proof for the delay bounds and the output bounds can
be referred to [95]. Note, this theorem requires the stability condition for a
system, i.e., the condition under which the buffer can never be infinity. To
guarantee that we should ensure v(α, β) < ∞, which implies the long term
rate of arrival curve should not exceed the long term rate of service curve
(e.g., α = γr,b, β = βR,T , then r ≤ R), which are usually interpreted as the
long term arrival rate and service rate.

20

2.2. Deterministic Network Calculus

Deterministic Convolution-Form Representation of Networks

Now let us introduce another fundamental result of the network calculus -
convolution-form representation of networks, within an underlying min-plus
algebra, whereby the service curve provided to a single flow by the whole net-
work can be expressed by convolving the service curve of each node. Before
the introduction we review some useful properties of the min-plus convolu-
tion.

Theorem 2. (Properties of ⊗)

• (Closure) (f ⊗ g) ∈ F .

• (Associativity) (f ⊗ g)⊗ h = f ⊗ (g ⊗ h) .

• (Commutativity) f ⊗ g = g ⊗ h .

• (Distributivity with respect to ∧) (f ∧ g)⊗ h = (f ∧ h)⊗ (g ∧ h) .

• (Addition of a constant) For anyK ∈ R
+, (f+K)⊗g = (f⊗g)+K .

• (Isotonicity) Let f, g, f ′, g′ ∈ F . If f ≤ f ′ and g ≤ g′ then f ⊗ g ≤
f ′ ⊗ g′ .

The proofs of these properties can be found in [95]. These properties
instrumentally build up the concatenation theorem.

Theorem 3. (Concatenation of Nodes) Consider a flow F (t) traversing a set

of network nodes Si, i = 1, . . . , N,N ≥ 1 in sequence. Each node offers a

service curve βi(t) to the flow. Then the concatenation of these nodes offers

a service curve βnet(t) = β1 ⊗ β2 ⊗ · · · ⊗ βN (t) to the flow such that the

output function F ′(t) of the network satisfies

F ′(t) ≥ F ⊗ βnet(t) .

Proof. Denote the input respectively output functions of node i by Fi(t) re-
spectively F ′

i (t), clearly F ′
i−1(t) = Fi(t) and F ′(t) = F ′

N (t). We can itera-
tively derive the following

F ′(t) ≥ FN ⊗ βN (t)

≥ (FN−1 ⊗ βN−1)⊗ βN (t)

· · ·
≥ (· · · ((F1 ⊗ β1)⊗ β2)⊗ · · ·) (t)

21

2. Background on Network Calculus

...

Figure 2.5: Network service curve.

= F1 ⊗ (β1 ⊗ β2 ⊗ · · · ⊗ βN) (t)

= F ⊗ βnet(t) .

From the second line to the fourth line we recursively used the closure and
isotonicity properties. In the fifth line we recursively used the associativity.

βnet(t) is referred as the network service curve. We depict this in Fig-
ure 2.5. Not only used for concatenating nodes, we can also use this result to
decompose a service curve. For example, a rate-latency service curve βR,t(t)
can be decomposed as δT ⊗ λR(t), where λR(t) is the peak rate function de-
fined as Rt if t > 0, 0 otherwise. Moreover interestingly, applying the com-
mutativity property of the min-plus convolution to βnet(t) we find that the
order of the nodes has no effect. That implies only changing the location of a
bottleneck node will not solve the problem. Consider the concatenation of N
constant-rate services with rateR1, . . . , RN . βnet(t) = min{R1, . . . , RN}t,
wherever the minimum rate service locates.

Now we introduce the main contribution of the concatenation theorem.
In order to derive a delay bound of a network with multiple nodes, we have
two options. One is to compute the delay bounds on each node and sum
them up, the other is to apply the network service curve. The former is called
node-by-node analysis. The latter allows us to pay bursts only once (PBOO).
Let us compare them for a simple example. Consider a flow traversing a
simple network with two nodes. We denote the service curve of the nodes
as βi(t), i = 1, 2 and the arrival curve of the input respectively the output
at node i as αi(t) and α′

i(t), again α′
1 = α2. Assume rate-latency service

curves βi(t) = βRi,Ti
and token-bucket arrival curve α1(t) = γr1,b1 . The

network satisfies the stability condition r1 < Ri, such that the backlogs of
both nodes will never be infinity. From the output bound in Theorem 1 we
know α2(t) = α1 ⊘ β1(t). Then we get the delay bounds at each node

W1(t) ≤ h(α1, β1) = T1 +
b1
R1

:=W1

22

2.2. Deterministic Network Calculus

W2(t) ≤ h(α1 ⊘ β1, β2) = T2 +
b1 + r1T1

R2
:=W2 .

We get the end-to-end delay bound as

W (t) ≤W1 +W2 = T1 + T2 +
b1
R1

+
b1
R2

+
r1T1
R2

.

Applying network service curve we have

W (t) ≤ h(α1, β1 ⊗ β2)

= T1 + T2 +
b1

min{R1, R2}
:=W .

It is easy to see that W1 +W2 > W . The former considers the delays caused
by the arrival burstiness on both nodes, which is, however, redundant. We
only need to consider it once on the bottleneck node (min{R1, R2}). r1T1

R2

part is also redundant, because the burstiness gathered by the delay element
in time T1 at the first node is potentially decided by the burstiness from the ar-
rival. If consider a more general n nodes network with the same service curve

βi(t) = βR,T , we have the node-by-node delay bound nT+
(n2−n)r1T+2nb1

2R ,

while using network service curve the delay bounds is nT + b1
R . The delay

bounds scale in the order O(n2) v.s. O(n). This example shows the PBOO
gain generally for FIFO scheduling. For non-FIFO scheduling, we need to
construct different service curve, more details can be found in [128, 126]. In
this thesis we assume locally FIFO scheduling. In the next section we discuss
more scheduling schemes when we face the multiplexing of flows, but still
based on that each flow is served locally FIFO.

Scheduling Modeling with DNC

A further strength of the network calculus is that service curve can abstract
a variety of scheduling algorithms. Without loss of generality , we consider
two flows F1(t) and F2(t) multiplexing at one node. It is possible to de-
rive the performance bounds for the aggregated flows, which can be repre-
sented by F (t) = F1(t) + F2(t). The challenge is to derive the performance
bounds for the individual flow, which is sharing the service with the other
flow under different scheduling rules. The service curve model can identify
the amount of service left over for one flow by the other. Then for a flow
traversing a network, we can still represent the network service curve for it
as the convolution-form of the leftover service curve at each node. There

23

2. Background on Network Calculus

exists a number of scheduling algorithms. Next, we show some general ex-
amples, as they are used in this thesis. A more thorough list can be found in
[95, 102, 63].

First, consider two flows F1(t), F2(t) multiplexing at one node without
assuming any order in which the flows are served - blind multiplexing. If the
node offers a strict service curve β(t) and the arrival curves are α1(t) and
α2(t), then the service curve seen by F1(t) is

β1(t) = [β(t) − α2(t)]
+
. (2.8)

We see that this is symmetric to both flows. We also should note that this
can not be derived from the general service curve ([95]). This model assumes
knowing no information of order. When the scheduler employs Static Priority
(SP) [95, 125, 98], we can then improve the leftover service curve. Now
suppose that n flows F1(t), F2(t), . . . , Fn(t) with decreasing priorities. Flow
i sees a wide-sense increasing leftover service curve by subtracting the arrival
curves of the flows with higher priority

βi(t) =



β(t)−
i∑

j=1

αj(t)





+

. (2.9)

This equation implies that flow 1 sees the whole service curve. In fact, for a
discrete data model, if we know the maximal packet length in the other flows
with lower priority lmax,i, we should also subtract this if we assume to protect
the service of a packet from the preemptive scheduling.

The leftover service curve can model another general case: First-In-First-
Out (FIFO) scheduling. If the nodes offers a service curve β(t), then for
parameter x ≥ 0 we have the leftover service curve

β1(t) = [β(t)− α(t − x)]
+
1{t>x} .

When x = 0, this is the blind multiplexing case. Otherwise we can choose
different x. Although it is shown that not every x makes it fulfill the ser-
vice curve definition ([95]), we can still optimize the performance bounds by
carefully changing x. The proof can also be found in [95].

24

2.3. Stochastic Network Calculus

2.3 Stochastic Network Calculus

Deterministic network calculus assumes that the stochastic traffic and the ser-
vice capacity are “unknown”, thus it bounds them and provides the worst-case
performance of networks. This is especially useful to those critical systems.
However, in many other real world applications, on one hand, we can not
always assume that the bounds exist or to use a regulator to bound the traf-
fic according to some specification. For example, consider a Poisson arrival
flow, without regulation there exists no deterministic arrival curve. On the
other hand, although the deterministic bounds exist, the results the worst-
case analysis produces are too conservative, since we do actually “know” that
the things are not always running in a nearly collapse situation. The random
fluctuation between some normal values and the critical value does not violate
the deterministic bound but will bring us more possibilities.

A simple example is the statistical multiplexing. Consider thatN Bernoulli
flows are multiplexing, each generates one data unit per time unit with prob-
ability p, 0 ≤ p ≤ 1. The deterministic arrival curve for each flow is αi(t) =
1 · t, i = 1, . . . , N , thus for the aggregate is α(t) = Nt. This bound is greedy
only when all theseN flows generate data simultaneously and for all the time.
However, the probability of this event is zero. From the Central Limit The-
orem (CLT), we know that each flow generates data at rate p asymptotically,
so that for N flows at rate Np. For large times t, the deterministic bound is
too conservative. We can loosen the deterministic bounds through a violation
probability, such that we improve the resource utilization only with a small
loss of quality of service (QoS) accuracy if the system can tolerate it. Usually
a small violation probability, e.g., in the order of 10−6, can already requite a
large statistical gain over the deterministic bounds.

Although there are queueing theory and some other stochastic modeling
techniques, we still want to provide a theoretic framework to provision the
system by analyzing the bounds of its characteristics. Stochastic network
calculus has been explored to achieve this objective. In recent years, many
efforts towards a stochastic network calculus have been made (see e.g., [33,
156, 53, 138, 28, 8, 42, 61, 79, 96]). Many different definitions of stochastic
extensions of arrival and service curves have been proposed and discussed. In
particular, to provide a stochastic service curve definition that still allows for a
favorable concatenation has shown to be a hard problem for some time. In this
section, we simply provide the necessary definitions and basic results as they
pertain to the work in this thesis, without delving into the deep discussions on
alternative definitions. Our defintions are classified in two groups. One is to
use the non-random bounding functions, which is mainly based on [28] and

25

2. Background on Network Calculus

can be seen as the direct generalizations of the deterministic network calculus
counterparts. The other is to directly observe the stochastic traffic and service
processes and describe the bounds either as a bounding random process or
some characterization relating to time interval [36, 86, 61]. In this section,
we denote the traffics and services as random processes. Next, we introduce
the definitions in turn.

2.3.1 Stochastic Bounds of Arrivals

Directly extended from the deterministic arrival curve, we have the following
definition.

Definition 7. (Stochastic Arrival Curve) A nonnegative wide-sense increas-
ing function α(t) is defined as the stochastic arrival curve for the arrival pro-
cess A(t), if it satisfies for all t ≥ 0 that

Pr

(

sup
0≤s≤t

{A(s, t)− α(t− s)} ≥ 0

)

≤ ε ⇔ Pr (A(t) ≥ A⊗ α(t)) ≤ ε .

(2.10)

Note, εmight also be a violation function of some hidden parameters from
the arrival curve, or inversely, α is a function of ε. Both expressions can be
found in the literatures [155, 138, 19]. Note further, this definition provides
a sample path bound as for example discussed in [28], where it is also called
sample path effective envelope. It is a stronger extension from the so-called
effective envelope defined in [20, 29], where we move s ≤ t outsides of the
probability such that together with for all t ≥ 0

Pr (A(s, t) ≥ α(t− s)) ≤ ε .

The sample path envelope reversely observes the entire history until time t of
the arrivals and relates them to the violation probability, while the effective
envelope observe the arrivals in all the fixed intervals [s, t]. We can under-
stand the difference if we for example consider the following expressions:
“at most one sample path violates all the time” v.s. “at most one sample path
violates in any time interval”. The former constrains the same sample path
all the time; although one, the latter can constrain different one sample path
at different time points. The advantage of the sample path envelope is that it
simplify the derivation of the performance bounds for a single node case and
for the multiple nodes case if carefully choosing the violation functions, since
it resemble to the corresponding deterministic bounds. However, the simplic-
ity hurts a bit the agility and produces a looser bound. This can be seen from

26

2.3. Stochastic Network Calculus

the single way transform of both envelopes. We usually construct the sample
path envelope from the effective envelope using Boole’s inequality, i.e.,

Pr

(

sup
0≤s≤t

{A(s, t)− α(t− s)} ≥ 0

)

≤
∑

0≤s≤t

Pr (A(s, t)− α(t− s) ≥ 0) .

That means, we can use the effective envelope as the sample path enve-
lope, instead, with redundant sum of the violation probabilities. An alter-
native to do that is to add a slack factor δ > 0 to the rate of the effec-
tive envelope αeff (t) such that the sample path envelope αsp(t) satisfies
αsp(t) = αeff (t) + δt. This adjustment helps us to find a better violation
probability according to the requirement through inserting δ into the viola-
tion function of the effective envelope. See [40, 82] for details. The essence
behind this operation is the inherent dependence between the envelope and
the violation probability. A trivial example illustrates that very well. If the
envelope is ∞ instead of some reasonable values, the violation probability is
clearly 0. Therefore, changing envelop will have effect on the violation prob-
ability and vice versa, intuitively, smaller envelope, bigger violation proba-
bility. In the literatures the usual treatment to establish the relationship is
as stated above, to mathematically insert parameters into either the envelope
or the violation function such that this parameter is used by the counterpart.
Next we show an important class of the arrival curves as an example of the
stochastic arrival curve.

The generalized Stochastically Bounded Burstiness (gSBB) model ([157,
53, 7]) belongs to the stochastic arrival curve. It defines α(t) as an affine
function with rate r and instantaneous burst bound σ ≥ 0, i.e., α(t) = ρt+σ.
Then for all t ≥ 0

Pr

(

sup
0≤s≤t

{A(t)−A(s)− ρ(t− s)− σ} ≥ 0

)

≤ ε(σ) .

Here we explicitly denote the violation probability as a function of σ as it
is given in the envelope expression. When σ increases, ε(σ) decreases. This
arrival curve is a sample path envelope. It extends the Stochastically Bounded
Burstiness (SBB) model [138] and can be constructed from it. The violation
function for SBB and gSBB should be n-fold integrable, i.e., for any order n

∫ ∞

σ

· · ·
∫ ∞

σ
︸ ︷︷ ︸

n times

ε(u)(du)n

27

2. Background on Network Calculus

is bounded for any σ > 0, such that when the traffic traverses a network of
nodes we can still get an envelope. Then the SBB model provides the effective
envelope as for all 0 ≤ s ≤ t

Pr (A(s, t) ≥ ρt+ σ) ≤ ε(σ) .

In both the gSBB and SBB stochastic arrival curves we map the violation
probability onto the instantaneous burstiness bound. Choosing different forms
of violation function we can model traffics with different characteristics. A
very important class is the Exponentially Bounded Burstiness (EBB) [156]
with ε(σ) =Me−θσ, whereM and θ are closely related to the traffic process.
The exponential decay rate θ determines the shape of the violation function.
The rate ρ also depends on θ.

Since ε(σ) is in general form, the gSBB and SBB can model many kinds
of traffics [107]. EBB can model short range dependent (SRD) traffics, e.g.,
Markov-Modulated Processes (MMP), while the sum of exponential func-
tions ε(σ) =

∑

iMie
−θiσ or a Weibullian Bounded Burstiness (WBB) ε(σ)=

Me−θσ2(1−H)

can model some long range dependent (LRD) or self-similar
traffics.

Besides the bounding functions, one can also indirectly or directly ob-
serve the traffic using its statistical characteristics and find a bound. Indi-
rectly we can bound the arrival process with a stochastically larger process
if it is more convenient to get the statistical characteristics of this bounding
process. The stochastic ordering for the arrival process A(t) and bounding
process E(t) is defined as A(s, t) ≤st E(t − s), if for all 0 ≤ s ≤ t and all
real value x

Pr(A(s, t) > x) ≤ Pr(E(t− s) > x) .

Based on that, Kurose [92] provides a stochastic arrival curve by bounding
the arrivals in each time intervals tk, k = 1, 2, . . . with a family of random
variables (r.v.) E(tk), such that A(s, s + tk) ≤st E(tk) for all s ≥ 0. Di-
rectly, we can use the arrival process itself as the bounding process, or more
precisely and strictly, find a bounding process almost surely larger than the
arrivals, i.e., A(s, t) ≤ E(s, t) a.s. [40]. A lot of effort on capturing the traf-
fics using known stochastic processes permit us to simply observe the arrival
process instead of constructing its counterparts according to the orderings.

An accurate manner to represent the arrival process is to use its moment
generating function (MGF) and describe the bound of it. If we define and
denote the MGF of a random variableX asMX(θ) = E

[
eθX

]
for any θ ≥ 0,

we have the following definition.

28

2.3. Stochastic Network Calculus

Definition 8. (MGF Bound of Arrivals) The arrival processA(s, t) has MGF
bound, if its MGF exists and satisfies MA(s,t)(θ) ≤ eθα(t−s,θ) for all 0 ≤
s ≤ t, where α is a function of time interval and θ.

We see that this is a stationary bound. The use of MGF in network cal-
culus originates from the effective bandwidth [86], which is defined for an
arrival process A(t) as

αeb(θ, t) = sup
s≥0

{
1

θt
logE

[

eθA(s,t+s)
]}

.

Later Chang [34, 36] explicitly generalizes it to extend Cruz’s (σ, ρ) calculus.
The arrivals are (σ(θ), ρ(θ))-upper constrained for some θ > 0, if

1

θ
logE

[

eθA(s,t)
]

≤ ρ(θ)(t − s) + σ(θ) , (2.11)

for all 0 ≤ s ≤ t. We can see that the new term θ is generated from the
MGF’s parameter. A direct construction of the MGF bound comes from the
effective bandwidth, i.e.,

MA(s,t)(θ) ≤ eθα
eb(θ,t−s)·(t−s) .

A further characterization, the θ-minimum envelope rate (θ-MER) denoted
by a∗(θ), is defined to lower bound all the ρ(θ) with the same θ,

a∗(θ) = lim sup
t→∞

αeb(θ, t) . (2.12)

We say A(t) has θ-envelope rate ρ(θ) if ρ(θ) ≥ a∗(θ). If σ(θ) < ∞, a
(σ(θ), ρ(θ))-upper constrainedA(t) always has a θ-envelope rate ρ(θ), which
can be easily proved by constructing Eq. (2.12) from Eq. (2.11). It is also
shown in [36] that θ-MER is increasing in θ: from the mean rate to the peak
rate, as θ increases from 0 to ∞. A later work of Fidler [61] more system-
atically extends this MGF bound in the framework of network calculus, par-
ticular in solving the performance bounds of networks with multiple tandem
nodes. The MGFs are usually known if the traffic models are given, e.g.,
regulated, Poisson, Markov on-off, periodic even fractional Brownian motion
(fBm) for the self-similar or long-range dependent (LRD) traffics.

Now we expose the relationship between the MGF bound and the stoch-
astic arrival curve. We can connect the effective bandwidth with the effective
envelope, since they are respectively used to construct the MGF bound and
the sample path stochastic arrival curve. This is explicitly studied by Li et.

29

2. Background on Network Calculus

al.[98]. Given effective bandwidth αeb(θ, t), an effective envelope with vio-
lation probability ε is given by

α(t) = inf
θ>0

{

tαeb(θ, t)− log ε

θ

}

.

Conversely, for each ε ∈ (0, 1) and given α(t)

αeb(θ, t) ≤ 1

θt
log

(∫ 1

0

eθα(t)dε

)

.

This facilitates the construction of the traffic bounds in both directions. But
it is worth noting that we loosen the bounds by cycling the construction. We
do not show the proof for this result, instead, we show the construction for an
important example, the EBB, and the conversion, as it uses the same idea as
the general SBB. But before that, let us recall a instrumentally used mathe-
matical result, the Chernoff bound, which says, for a random variable X and
θ > 0, we have

Pr(X ≥ x) ≤ e−θxE
[
eθX

]

for all x. A direct application is that, for random variable A(s, t), we have
Pr(A(s, t) ≥ x) ≤ e−θxE

[
eθA(s,t)

]
. It is a form of stochastic arrival curve,

which relates the violation probability to the MGF of A(t). This bridges the
gap between both bounds.

Now, consider that an arrival process A(t) has MGF boundE
[
eA(s,t)

]
≤

eθr(t−s). We use the Chernoff bound and construct the form of EBB with a
parameter σ like

Pr(A(s, t) ≥ r(t − s) + σ) ≤ e−θr(t−s)e−θσE
[

eθA(s,t)
]

≤ e−θσ .

Then we can use the union bound to derive the stochastic arrival curve that is
defined for the sample paths.

Conversely, given Pr(A(s, t) ≥ r(t − s) + σ) ≤ e−θσ and note that
A(t) ≥ 0 we have

E
[

eθ
′A(s,t)

]

=

∫ ∞

0

Pr
(

eθ
′A(s,t) > x

)

dx

≤ 1 +

∫ ∞

1

e−θσd
(

eθ
′(r(t−s)+σ)

)

30

2.3. Stochastic Network Calculus

Bounding Process of A(s, t) MGF Bound

Bernoulli eθ
1
θ
log(1−p+peθ)(t−s)

Poisson eθ
1
θ
λ(eθ−1)(t−s)

MMP eθ
1
θ
log(sp(φ(θ)λ))(t−s)

Marked Point Process Xi ∼ exp(µ) i.i.d.

((Ti)i≥1, (Xi)i≥1) If Ti = i, then eθ
1
θ
log(µ

µ−θ
)(t−s)

If Ti+1 − Ti ∼ exp(1λ), then eθ
λ

µ−θ
(t−s)

Table 2.1: MGF Bounds of Arrivals.

= 1 +
θ′

θ − θ′
eθr(t−s) , θ′ < θ .

In the second line we let x = eθ
′(r(t−s)+σ).

A critical prerequisite for MGF bound is that MGF must exist. This re-
stricts the conversion to EBB and at the same time limits the application to a
more general class of traffics. Another critical point of the MGF bound is that
in order to enable a lower computational complexity, the MGF bound should
better be an exponential of a linear function of t. An counterexample is the
MGF of the fBm, which does not fall into the EBB class. Next, we list the
MGF (bounds) of some very useful traffic models, since most of them are
used in the rest of this thesis, see Table 2.1. See the concrete definition of
MMP in Section 4.1.1.

The applications of the two kinds of definitions, the stochastic arrival
curve and MGF bound, on bounding the traffic multiplexing exhibit differ-
ent perspectives. Using the former, as discussed at the beginning of this sec-
tion, the gain is the smaller bound than simply summarizing the respective
arrival bounds. Consider SBB firstly. Let A1 and A2 be two multiplexing
flows, each has effective envelop ρit + σ, i = 1, 2 with violation probability
εi, then the aggregate A(s, t) = A1(s, t) + A2(s, t) has an effective enve-
lope (ρ1 + ρ2)t+ σ with violation probability ε1(pσ) + ε2((1− p)σ), where
p ∈ (0, 1). We get this by observing that {A(s, t) ≥ (ρ1 + ρ2)(t− s) + σ}
⊆ {A1(s, t) ≥ ρ1(t− s) + pσ} ∪ {A2(s, t) ≥ ρ2(t− s) + (1 − p)σ}. This
derivation requires no independence of flows. But the drawback of this cal-
culation is the possible unbounded cumulation of the violation probabilities
when the number of flows is large. The MGF bound of the aggregate flow is
derived differently. It is easy to see thatMA(s,t)(θ) =MA1(s,t)(θ)MA2(s,t)(θ),
if we assume the independence of the flows. The bound is the sum of re-
spective bounds. The drawback is the independence assumption. But on the

31

2. Background on Network Calculus

Tail Bound MGF Bound
computation complex relatively simple

dependency assumption no ind. or depnd. (Hölder)
prob. convergence slow fast

Table 2.2: Tail bound v.s. MGF bound.

other hand, we can solve it by using Hölder inequality (see [36]), i.e., for two
r.v. X,Y and any p > 1, q > 1 with 1

p + 1
q = 1 we have

E|XY | ≤ (E|X |p) 1
p + (E|Y |q) 1

q . (2.13)

The benefit is also obvious, the calculation is greatly simplified and the po-
tential unbounded cumulation can be scaled down to a bounded value because
we move the sum to the exponent of the exponential function. We summarize
these statements in Table 2.2.

2.3.2 Stochastic Service Curve and Dynamic Server

The networks consists of heterogeneous elements with diverse capacities.
The services these elements provide to the traffics are stochastic processes.
Besides the deterministic service curve we can also adopt the same ways
to stochastically bound the service like what we do for the arrivals, i.e., as
bounding function with violation probability as well as bounding process with
its MGF bound.

Definition 9. (Stochastic Service Curve) If the service S provided by a sys-
tem for a given arrival A(t) results in a departure D(t), we say that S offers
a stochastic service curve β if ∀t ≥ 0

Pr (D(t) ≥ A⊗ β(t)) ≥ 1− ε . (2.14)

We can also denote it as βε to differ with the deterministic one. This
definition follows again [28], where it is called effective service curve. In fact,
it is a modification of the prior definition introduced by Cruz [53], where the
service curve is stochastically delivered to the traffic with deficit profile ε(σ),
such that

Pr (D(t) ≤ A⊗ S(t)− σ) ≤ ε(σ) . (2.15)

The difference between Eq. (2.15) and (2.14) is the form of service curve
functions. They can be transformed to each other through defining β(t) =

32

2.3. Stochastic Network Calculus

S(t) − σ or more carefully, β(t) = [S(t)− σ]+, and vice versa. Hence,
although Eq. (2.14) exhibits a single violation probability, it is implied as a
function of some σ, if we construct β(t) = β(t) + σ − σ := S(t)− σ. Note,
these definitions are sample path wise definition as the convolution is used.
When generalizing these sample path stochastic service curves, we may meet
a trap. Assuming stationarity and ergodicity,Pr (∃t ≥ 0 : D(t) ≤ A⊗ β(t))
is either 0 or 1 [28, 48].

Another important class of service bound is the bounding process. It is
a stochastic interpretation of a former concept introduced by Chang [34], the
dynamic F -server, where the deterministic service curve F (t) is extended to
the time varying setting as a bi-variate function F (s, t) in F (from β(t) to
β(s, t) using our terminology). To do that, the convolution is extended to the
bi-variate functions. For bi-variate functions f, g we define f ⊗ g(s, t) :=
infs≤u≤t {f(s, u) + g(u, t)} for 0 ≤ s ≤ t. Then we write f ⊗ g(t) =
f ⊗ g(0, t). Now we interpret F into a random process S(s, t) and have

Definition 10. (Dynamic Server) A server guarantees a double indexed dy-
namic service process S(s, t) for an arrival process A(t) if the departure pro-
cess D(t) satisfies that

D(t) ≥ A⊗ S(t)

for all t ≥ 0. If the inequality holds with the equality, we say the dynamic
service is exact.

Note, since this definition extends the lower bounding function of service,
it is actually still a characterization of the service (lower bound) instead of the
service process itself. But in order to avoid the trivial cases, e.g. 0(s, t), we
should usually understand it as the service process itself by considering that
the service process is almost surely lower bounded by itself. For this case, we
call a server that guarantees a dynamic service process S(s, t) as a dynamic
server S(s, t). An example of dynamic server is the work conserving server
with time varying service capacity S(s, t). Consider current time t and the
beginning of the last busy period τ , τ ≤ t. On one hand, for the cases t falls
into the last busy period respectively not in, we knowD(t) = A(τ) +S(τ, t)
or D(t) = A(t). Then we have D(t) ≥ inf0≤s≤t {A(s) + S(s, t)}. Hence,
a time varying work conserving server is a dynamic server. Further on the
other hand, a work conserving server also assures thatD(t) ≤ D(s)+S(s, t),
∀s ∈ [0, t], which implies D(t) ≤ A(s) + S(s, t), ∀s ∈ [0, t]. We can see
that it is an exact dynamic server.

Similar to the MGF bounds of the arrival processes, we define the MGF
(Laplace transform) bound of a dynamic server.

33

2. Background on Network Calculus

Definition 11. (MGF Bound of Dynamic Server) The dynamic server S(s, t)
has MGF bound, if its MGF exists and satisfies MS(s,t)(−θ) ≤ e−θβ(t−s,θ)

for all 0 ≤ s ≤ t, where β is a function of time interval and θ.

Clearly, this is again a stationary bound like its arrival counterpart. And
because we need a lower bound, we use negative parameter for the MGF.
A direct example of this MGF bound is to mimic the (σ, ρ) bound, i.e.,
MS(s,t)(−θ) ≤ e−θ(ρ(t−s)−σ), which recovers the constant rate boundC·(t−
s) if ρ = C and σ = 0, respectively, the rate-latency wise boundR·(t−s−T)
if ρ = R and σ = RT . However, in this thesis, we will lay our focus mainly
onto the modeling of the flow transformation instead of the service bound. So
for the ease of exposition, unless specified we assume to know the constant
rate bound for the MGF of a service process, in particular of the time varying
work conserving servers, i.e., MS(s,t)(−θ) ≤ e−θC(t−s). This assumption is
also reasonable in real world, because in many cases it is natural to build up a
service with a relative constant capacity and the fluctuation is generated by the
(cross) traffic. Now consider a slightly generalized version of a constant rate
server - a memoryless on-off server. We first denote S(s, t) =

∑t
i=s+1 Si,

where Si’s are i.i.d. random variables and Si equals either to R in ON state
or 0 in OFF state. The MGF of S(s, t) follows as

MS(s,t)(−θ) = (MS1(−θ))(t−s)

= e−θ(− 1
θ
logMSi

(−θ))(t−s) .

We can see that ρ = − 1
θ logMSi

(−θ) for θ > 0. MSi
(−θ) is known if know

about the service process, e.g., Bernoulli with ON probability p at each time
unit, MSi

(−θ) = 1 − p + pe−θR, where R is the rate in ON state. Alert
reader will find that the bounding rate ρ is in fact a function of θ. Given the
description of service process, we can construct the ρ function. Nevertheless,
we may not simply assume to know ρ’s value, e.g. ρ = 4.0Mb/s, the service
information is implied in θ. If we do that, θ will be determined, which will
increase the computational complexity, or possibly loosen the results of the
performance analysis.

2.3.3 Stochastic Analysis

Stochastic Single Node Performance Bounds

Based on the stochastic arrival and service curve definitions, which are sample
path bounds, we get a direct stochastic extension of the performance bounds
from Theorem 1 as following (see also [28]).

34

2.3. Stochastic Network Calculus

Theorem 4. (Stochastic Performance Bounds Given Sample Path Bounds

of Arrivals and Services) Consider a flow A(t) with an arrival curve αεα

traversing a system S that offers a stochastic service curve βεβ . Then we

obtain the following stochastic performance bounds for all t ≥ 0 and 0 ≤
s ≤ t

backlog: Pr(b(t) ≤ v(αεα , βεβ)) ≥ 1− εα − εβ ,

delay: ∀t : Pr(d(t) ≤ h(αεα , βεβ)) ≥ 1− εα − εβ ,

output: Pr (D(s, t) ≤ αεα ⊘ βεβ (t− s)) ≥ 1− εα − εβ .

The proof directly follows the same arguments as for Theorem 1 together
with using Boole’s inequality when jointly consider the sample path viola-
tions of the arrival curve and service curve.

It should be noted that under the stochastic service curve definition being
used here the concatenation of nodes is problematic without further assump-
tions. In particular, the violation probabilities for concatenated service curves
are time-dependent and can therefore be made equal to one, which makes the
guarantees of the concatenated service curve void. Several resorts have been
proposed in the literature, the most obvious being the introduction of time-
scale bounds which avoids the degeneration of the service curve guarantee
for large time durations. We refer the reader to the very good discussion
about these issues in [28]. In this thesis, we stay with the straightforward
definition of a stochastic service curve, which suffices for our purposes.

For the case of assuming statistical independence between arrivals and
services, the MGF bounds, as discussed in Section 2.3.1, will be a better
option to derive the performance bounds. Next, we exhibit the derivation of
the stochastic backlog, delay and output bounds. We point out that the basic
argument here will be used throughout this thesis.

From Eq. (2.1) in the definition of the backlog process we have

B(t) = A(t)−D(t)

≤ A(t)−A⊗ S(t)

= A(t)− inf
0≤s≤t

{A(0, s) + S(s, t)}

= sup
0≤s≤t

{A(s, t)− S(s, t)} .

Thus we have the following probability inequality when we measure the event

35

2. Background on Network Calculus

that backlogB(t) over an upper bound b.

Pr(B(t) ≥ b) ≤ Pr

(

sup
0≤s≤t

{A(s, t)− S(s, t)} ≥ b

)

≤
∑

0≤s≤t

Pr (A(s, t)− S(s, t) ≥ b)

≤
∑

0≤s≤t

e−θbE
[

eθ(A(s,t)−S(s,t))
]

.

In the second line we used Boole’s inequality (also known as the union bound),
through which we collect all the probabilities that for changing s ∈ [0, t] the
event A(s, t) − S(s, t) ≥ b is true. This convenient treatment leads to al-
though loose bounds for some cases, gives us however much freedom to seek
the probability bound for a wide range combinations of arrivals and services
in terms of this sample path event. A tighter bound is obtained in [47] by rep-
resenting this sample path event as bounded stopping time and constructing
martingales. But the result only applies to the single node case and assumes
to know more information about the arrival and service processes. In this the-
sis we will use the Boole’s inequality in order to make our results suit more
cases especially the multiple nodes analysis. Since we want to build up the
models of flow transformation and provide performance bounds, we concern
more applicability than the tightness of the results.

As following steps, one can either convole the distribution bounds of
A(s, t) and S(s, t), or, like in the third line shown, more elegantly use the
Chernoff bound for θ > 0. Then like many literatures, we assume the statis-
tical independence between A and S, or, use Hölder’s inequality. We do the
former and for all θ > 0 get

Pr(B(t) ≥ b) ≤
∑

0≤s≤t

e−θbE
[

eθA(s,t)
]

E
[

e−θS(s,t)
]

≤ e−θb
∑

0≤s≤t

e−θ(C−r(θ))(t−s)

≤ e−θb lim
t→∞

∑

0≤s≤t

e−θ(C−r(θ))(t−s)

= e−θb 1

θ(C − r(θ))
,

if we assume that MA(s,t)(θ) ≤ eθr(θ)(t−s) andMS(s,t)(−θ) ≤ e−θC(t−s) in

36

2.3. Stochastic Network Calculus

the second line and let t go to infinity. For the non-triviality of the bounding
violation probability, we need it smaller than 1, or, at least the geometric
series part should be bounded. Otherwise ∞ can also be a backlog bound
(Pr(B(t) > ∞) satisfies the inequality). That means the system is instable.
The stability condition is then C > r(θ).

Now we derive the stochastic delay bound. We argue by analogy. Because
we define delay W (t) at any time t as the infimum of all τ ’s such that A(t−
τ) ≤ D(t), we have Pr(W (t) ≥ d) = Pr(A(t− d) > D(t)). Then we get

Pr(W (t) ≥ d)

≤ Pr

(

A(t− d) > inf
0≤s≤t

{A(0, s) + S(s, t)}
)

= Pr

(

sup
0≤s≤t−d

{A(s, t− d)− S(s, t)} > 0

)

≤
∑

0≤s≤t−d

Pr(A(s, t− d)− S(s, t) > 0)

≤ e−θCd 1

θ(C − r(θ))
,

if we assume to have the same MGF bounds as for calculating backlog bound.
Similarly, we calculate the MGF bound for the departure processD(s, t). The
sample path argument is

D(s, t) ≤ D(t)− inf
0≤u≤s

{A(0, u) + S(u, s)}

≤ sup
0≤u≤s

{A(u, t)− S(u, s)} .

Then we get

E
[

eθD(s,t)
]

≤ eθr(θ)(t−s) 1

θ(C − r(θ))
.

This represents the σ(θ), ρ(θ) constraints.

We conclude the above derivation of the performance bounds as following
theorem.

Theorem 5. (Stochastic Performance Bounds Given MGF Bounds of Arrivals

and Services) Consider a node that offers a dynamic server S(s, t) for any

time 0 ≤ s ≤ t. Assume the flow A(s, t) traversing the node has MGF bound

MA(s,t)(θ) ≤ eθr(θ)(t−s) for any θ > 0. We also assume the MGF (Laplace)

bound on the service as MS(s,t)(−θ) ≤ e−θC(t−s) for any θ > 0. Then we

37

2. Background on Network Calculus

obtain the following stochastic performance bounds for all t ≥ 0

backlog: Pr (B(t) ≥ b) ≤ e−θ1bK1 ,

delay: Pr (W (t) ≥ d) ≤ e−θ2CdK2 ,

output: MD(s,t)(θ3) ≤ eθ3r(θ3)(t−s)K3 ,

where Ki =
1

θi(C − r(θi))
, i = 1, 2, 3 .

It is worthy to note that when we use the same θ instead of θ1, θ2, θ3,
we reveal that with the same violation probability d = b

C . This is an ap-
proximative counterpart to the average analysis. At the same time, the factor
(K3) also plays an important role for bridging the MGF bounds of arrivals
and departures. We also note that for many cases we exactly know the MGF
functions of the arrival and service processes, we thus directly use them as the
MGF bounds. When assuming the MGF bound of the arrivals we ignore σ
part for simplicity of the exposure. It is reasonable to assume so for the most

traffic cases, e.g. for Poisson arrivals A(s, t), MA(s,t)(θ) = eλ(t−s)(eθ−1).
But after being served, the departures MGF bound has that σ part (transform
K3), which should be applied when necessary.

Stochastic Convolution-Form Representation of Networks

In Section 2.2.3 we have shown that the convolution of the service curves of
each node represents the service curve of the tandem network of them (The-
orem 3). This result can not simply carry over to the stochastic setting by the
same argument stated in the proof of Theorem 3. The difficulty is discussed
in [28]. Consider a two nodes network with stochastic service curves β1, β2
with violation probabilities ε1, ε2 as defined as Eq. (2.14), such that

Pr

(

D1(s) ≥ inf
0≤u≤s

{A1(u) + β1(u− s)}
)

≥ 1− ε1

Pr

(

D2(t) ≥ inf
0≤τ≤t

{A2(τ) + β2(t− τ)}
)

≥ 1− ε2 .

Assume at τ we get the infimum of the second equation. As for a given t,
A2(t) = D1(t) is random, therefore τ is a random variable. We can not
simply use the first inequality by replacing s with τ . To solve this problem,
we can construct a sample path bound of D1(s) which implies the event that
D1(τ) is the same bounded. But by invoking Boole’s inequality the violation
probability for this construction has the form of tε. For a big t, the result

38

2.3. Stochastic Network Calculus

is trivial. To avoid this, many attempts are done. One can bound the time
scale by T such that the violation probability is Tε [98], or use the stochastic
adaptive service guarantee [28]. They are too difficult to deal with. One can
also construct the sample path service curve through losing a bit rate in the
service and gain a non-trivially bounded sum of violation probabilities. It is
defined in [43] as

Pr

(

sup
0≤s≤t

{

A⊗ [β − ρ(t− s)− σ]
+
(s)−D(s)

}

> 0

)

≤
t∑

s=0

Pr
(

D(s) < A⊗ [β − ρ(t− s)− σ]
+
(s)
)

.

Letting t→ ∞ a violation probability is obtained as ερ(σ) =
∑∞

s=0 ε(σ+ρs)
whose integral from 0 to ∞ should be ensured to be bounded. Then denote
β−ρ(t) = β(t) − ρt together with ερi (σi), we get the service curve for the n
nodes tandem network

βnet(t)=
[

β1 ⊗ β−ρ
2 ⊗ · · · ⊗ β−(n−1)ρ

n − σ
]+

(t) with (2.16)

εnet(σ)= inf
σ1+···+σn=σ

{
ερ1(σ1) + · · ·+ ερn−1(σn−1) + εn(σn)

}
.(2.17)

It is shown in [27] that using this stochastic network service curve the derived
delay bound scales as Θ(n logn).

The problem is easy to solve in case we use the bivariate representation
of the dynamic servers. First, we do not need any sample path argument
when iteratively convolving the dynamic servers. Second, in Section 2.3.3 we
see that the derivation of the performance bounds involves the MGF bound,
whose exponential form transforms the addition to a multiplication that con-
verges faster for the values smaller than 1.

Theorem 6. (Dynamic Server of Concatenated Nodes) Consider a flow A(t)
traversing a set of network nodes with dynamic servers Si(s, t), i = 1, . . . , N ,

N ≥ 1 in sequence. The concatenation of these nodes offers a dynamic server

Snet(s, t) = S1 ⊗S2⊗ · · ·⊗Sn(s, t) to the flow such that the departure pro-

cess D(t) satisfies

D(t) ≥ A⊗ Snet(t) .

Proof. The proof follows the same argument as shown in Theorem 3 by not-
ing that Di(t) = Ai+1(t).

D(t) = Dn(t) ≥ An ⊗ Sn(t)

39

2. Background on Network Calculus

= Dn−1 ⊗ Sn(t)

≥ (An−1 ⊗ Sn−1)⊗ Sn(t)

≥ · · ·
≥ (· · · ((A⊗ S1)⊗ S2)⊗ · · · ⊗ Sn) (t)

= A⊗ (S1 ⊗ S2 ⊗ · · · ⊗ Sn) (t) .

We recursively used the isotonicity and associativity of the min-plus con-
volution. This theorem enables the derivation of performance bounds for a
multiple nodes network as that for a single node case. Note, the commutativ-
ity of the min-plus convolution does not hold for the bivariate functions, the
change of order will lead to different dynamic server of the network. In this
thesis, we mainly use the dynamic server rather than the stochastic service
curve to represent the network service bound.

Scheduling Modeling with SNC

We provide the ways to model different scheduling schemes among multi-
plexing flows with SNC in this section. A basic assumption is still that the
flow is locally FIFO. And the key idea is as stated in Section 2.2.3, to charac-
terize the leftover service, either in form of stochastic curve, or constructing
its bivariate representation.

Liebeherr et. al. [102] introduced the so-called δ-scheduler to model the
static priority (SP), blind multiplexing (BMUX), FIFO and earliest deadline
first (EDF) scheduling algorithms in the sense of stochastic leftover service
curve. Consider N multiplexing flows. A δ-scheduler is defined as a work-
conserving locally FIFO scheduling algorithm if there exist constants {δij}
such that an arrival at time t from flow i has precedence precisely over those
arrivals from flow j that occur after t + δij . Then for a constant server with
capacity C, the stochastic leftover service is given. And if we only consider
N = 2 here for example, it is

β1(t) = [Ct− α2(t− x+ δ12(x))]
+
1{t>x}

with violation probability εs1(σ) = εα2(σ). Here, α2 is the sample path sto-
chastic arrival curve defined as Eq. (2.10). The indicator function 1cond = 1
if cond = true, 1cond = 0 otherwise. As it is shown in [102] that when
analyzing the end-to-end delay bounds, the number of network nodes dom-
inates the scheduling algorithms (the schedulings differ slightly from each

40

2.3. Stochastic Network Calculus

other when number of nodes not too small, e.g., 5), we simply lay our focus
on the scheduling algorithms we need in this thesis, i.e., BMUX, SP, FIFO. To
avoid the difficulty we deal with these by constructing the leftover dynamic
server instead of using this leftover service curve. Fidler [61] extended the
blind multiplexing (see Eq. (2.8) in Section 2.2.3) to the dynamic server case.
The flow of interest (A1(t)) at a work conserving server S(s, t) receives a
“leftover” dynamic server after S being used by cross flow (A2(t))

S1(s, t) = [S(s, t)−A2(s, t)]
+
. (2.18)

We now extend the leftover service curve for FIFO scheduler shown in
Section 2.2.3 Eq. (2.2.3) to its dynamic server representation. The corre-
sponding proof can also recover the BMUX case. The leftover dynamic server
for a work conserving FIFO scheduler is defined as

S1(s, t) = [S(s, t)−A2(s, t− x)]+ 1{t−x>s} . (2.19)

The proof follows relating the departure to the arrival at the start time of the
last busy period of the server. First fix t. We define τ, 0 ≤ τ ≤ t as the start
time of the last busy period of the node before t. Now denoteA(t) = A1(t)+
A2(t) andD(t) = D1(t)+D2(t), thenA(τ) = D(τ), A1(τ) = D1(τ). Now
we consider two cases.

(1) If at time t the node is not busy, then we have

D1(t) = A1(t) = A1(t) + S1(t, t) . (2.20)

(2) Otherwise, at time t the node is busy, we use D(t) = D(τ) + S(τ, t)
and have

D1(t) = A1(τ) + S(τ, t)− (D2(t)−A2(τ)) . (2.21)

Because D2(t) ≤ A2(t) and we know D1(t) ≥ D1(τ) = A1(τ), we get

D1(t) ≥ A1(τ) + [S(τ, t)−A2(τ, t)]
+
.

Together with Eq. (2.20) and let x = 0, the leftover dynamic server given in
Eq. (2.18) is proved. In fact, assuming FIFO we know more information than
BMUX. That means, for Eq. (2.21) we can find a tighter bound for D2(t)
instead the trivial one A2(t). There should exist some time point before t, at
which the arrivalsA2 have already reached or overtaken the amount ofD2(t).
We should find out that time point and the corresponding arrival amount.
Define

u := sup{v : A(v) ≤ D(t)} . (2.22)

41

2. Background on Network Calculus

Thus u ≤ t and
A(u) ≤ D(t) and Ar(u) > D(t) , (2.23)

where Ar(u) = infv>u{A(v)}. Clearly, for a continuous time and data
model we can get A(u) = D(t). The consideration here can also cover the
discrete data model, i.e., there is possibly a left-continuous break point of A
at time t. Now we prove Eq. (2.23) is also true for the individual flow. Be-
cause the node is busy at u < t. From A1(u) + A2(u) ≤ D1(t) +D2(t) we
claim that

A1(u) ≤ D1(t) . (2.24)

By contradiction, if it is not true, i.e., A1(u) > D1(t), we have A2(u) <
D2(t). That means, some data from flow 2 arrived after u and departed by
t (locally FIFO), while some data from flow 1 arrived by u have not yet de-
parted. That contradicts the FIFO assumption. It is analogous to claim that

A2r(u) ≥ D2(t) . (2.25)

Otherwise, A2r(u) < D2(t). Then, from the definition of Ar(u) and u
together with the fact that u < t, for any left continuous sample path of
A2, there exists some v ∈ (u, t] such that A2(v) < D2(t). For such v ∈
(u, t] we know A(v) ≥ Ar(u) > D(t) from Eq. (2.23). It follows that
A1(v)+A2(v) > D1(t)+D2(t) > D1(t)+A2(v) and thusA1(v) > D1(t).
This, again, contradicts the FIFO assumption.

Recall that D(t) = A(τ) + S(τ, t), we have D(t) ≥ A(τ), thus τ ≤ u.
Then we can find some t − x that falls into (u, t), such that A2(t − x) ≥
A2r(u). From Eq. (2.25) we get A2(t − x) ≥ D2(t) and use it as a tighter
bound into Eq. (2.21) and derive

D1(t) ≥ A1(τ) + S(τ, t)−A2(τ, t− x) . (2.26)

Here t− x > u thus t− x > τ . And we knowD1(t) ≥ A1(τ), which shows
that

D1(t) ≥ A1(τ) + [S(τ, t)−A2(τ, t− x)]
+
.

When t−x falls into [0, u], i.e., u ≥ t−x, it is not FIFO and we have a trivial
dynamic server 0, such that

D1(t) ≥ A1(u) = A1(u) + [S(u, t)−A2(u, t− x)]
+
1{t−x>u} .

Therefore, we conclude all cases and get the leftover dynamic server as shown
in Eq. (2.19).

42

2.4. Express Flow Transformations in Network Calculus

2.4 Express Flow Transformations in Network Cal-

culus

A major limitation of the scope of convolution-form networks (see Theo-
rem 3,6 and Eq. (2.16)) is caused by an underlying assumption that flows are
transported unaltered, for instance lossless, over the network. Concretely, it
is challenging whether many networks, in which data flows are being trans-
formed on the way to their destinations, can be expressed in convolution-
form. Ordinary examples are networks with lossy links, dynamic routing
or load balancing, and more sophisticated ones are wireless sensor networks
with their typical in-network processing, P2P content distribution systems,
software defined networks with their agile flow action definitions, media stre-
aming applications with some transcoding happening inside the network (e.g.,
to accommodate heterogeneous multicast receivers), or even network coding
scenarios and distributed real-time systems with heterogeneous resources.
Without the convolution-form representation, such networks can be still in
principle analyzed with network calculus by conducting an additive node-by-
node analysis. But on one hand, the resulting network queueing measures
would scale, as evidenced earlier, poorly; on the other hand, this can only
apply with using deterministic network calculus.

Many attempts have been done to deal with flow transformation but rare
can yet achieve the desirable convolution-form representation. One outstand-
ing work has been proposed in purely deterministic settings [64]. By intro-
ducing the so-called data scaling element (also called as scaler) to model
actual transformation processes, and by controlling the movement of these
elements in the network, the authors showed that the exact scaling properties
from the deterministic network calculus are preserved. This idea is the origin
of this thesis.

Next, we provide the necessary definitions and results for introducing
scaling elements into network calculus models as presented in [64].

Definition 12. (Scaling Function) A scaling function S ∈ F assigns an
amount of scaled data S(a) to an amount of data a. See illustration in Fig-
ure 2.6.

Figure 2.6: Data scaling element.

43

2. Background on Network Calculus

We follow the denotation of the scaling function used in [64]. Although it
is also used to denote service process, we will not be confused when we read
the following chapters, because in case we use scaling function S, we usually
correspondingly need the service curve β instead of service process. When
we talk about service process denoted by S, we will also need the stochastic
representation of the scaling element by using either stochastic scaling curves
S, S or scaling process X and denote the scaling element with S.

As can be seen from the definition of the scaling function, it is a very
general concept for taking into account data transformations in a network
calculus model. Note, however, that it does not model any queueing effects –
scaling is assumed to be done infinitely fast. Queueing related effects are still
modeled in the service curve element of the respective component.

Corollary 1. (Inverse Scaling Functions) Given a bijective scaling function

S ∈ F it follows that its inverse scaling function S−1 is a scaling function,

too.

Inverse scaling functions play a role in transforming systems into alterna-
tive systems that can be analysed more efficiently. More details are to follow.

Definition 13. (Scaling Curves) Given a scaling function S, two functions
S, S ∈ F are minimum and maximum scaling curves of S if for all 0 ≤ a ≤ b

S(b)− S(a) ≥ S(b − a) ,

S(b)− S(a) ≤ S(b − a) .

Here we slightly change the expression from [64], which does not differ
from this definition but may set up a trap when extending them to the stoch-
astic setting.

Corollary 2. (Sub- and Super-Additive Closure) Consider a scaling function

S with minimum and maximum scaling curve S and S. The super-additive

closure of S is a minimum scaling curve of S and the sub-additive closure of

S is a maximum scaling curve of S.

A function f is sub-additive respectively super-additive if f(x + y) ≤
f(x)+f(y) respectively f(x+y) ≥ f(x)+f(y) for all x, y. The sub-additive
closure of f is defined as infn≥1

{
f (n)

}
where f (n) is the n-fold min-plus

self-convolution of f with f (1) = f, f (2) = f ⊗ f, f (3) = f ⊗ f ⊗ f and
so on. The super-additive closure of f is defined as supn≥1

{
f (n)

}
where

f (n) is the n-fold max-plus self-convolution of f . As a consequence of this
corollary, we consider only sub-additive minimum scaling curve and super-
additive maximum scaling curve.

44

2.4. Express Flow Transformations in Network Calculus

Figure 2.7: Alternative systems.

Corollary 3. (Inverse Scaling Curves) Consider a bijective scaling function

S and let S and S be the respective minimum and maximum scaling curves. If

S and S are bijective , a valid maximum scaling curve of the inverse scaling

function S−1 is S−1 and a valid minimum scaling curve of the inverse scaling

function S−1 is S
−1

.

Theorem 7. (Scaled Servers – Alternative Systems) Consider the two systems

in Fig. 2.7 and let F (t) be the input function. System (a) consists of a server

with minimum service curve β and maximum service curve γ whose output is

scaled with scaling function S and system (b) consists of a scaling function S
whose output is input to a server with minimum and maximum service curve

βS and γS , respectively. Given system (a) the lower and upper bounds of the

output function of system (b), that are S(F) ⊗ βS and S(F) ⊗ γS are also

valid lower and upper bounds for the output function of system (a) if

βS = S(β) ,

γS = S(γ) ,

where S and S are the respective scaling curves of S. Given system (b),

the lower and upper bounds for the output function of system (a), that are

S (F ⊗ β) and S (F ⊗ γ) respectively, hold also for system (b) if S is bijec-

tive and

β = S−1 (βS) ,

γ = S−1 (γS) ,

where S−1 and S−1 are the respective scaling curves of S−1.

This means in effect that performance bounds for system (b) under this
assumption are also valid bounds for system (a) and vice versa, because these
bounds are derived based on the bounds of the output function. We can thus
effectively move a scaling function, e.g., in front of a service curve element as
long as we transform the respective service curve using the minimum scaling
curve of the scaling element. In [64], it is also shown that bounds computed

45

2. Background on Network Calculus

Figure 2.8: A network model with servers and scaling elements.

in the alternative system, i.e., after shifting the scaling elements, remain tight.
Now the utility of Corollary 3 is meaningful, since we can observe that it
enables us to compute scaled versions of the service curves when scaling
elements are shifted over service curve elements in the direction of the data
stream (behind the service curve).

The following corollary states the effect scaling has on arrival constraints
of a traffic flow.

Corollary 4. (Arrival Constraints under Scaling) Let F be an input function

with arrival curve α that is fed into a scaling function S with maximum scal-

ing curve S. An arrival curve for the scaled output from the scaling element

is given by

αS = S(α) .

If S is bijective and S−1 has a maximum scaling curve S−1, then given an

arrival curve for the scaled output process αS can be given as

α = S−1 (αS) .

The particular advantage of above results now becomes clear. When an-
alyzing the performance bounds of a network with scaling element, we can
shift the scaling elements to the ingress or the egress. And along the path of
shifting, we scaled the service curves this scaling element meets. Consider
the following tandem network which is modeled as a sequence of a scaling
function S1, two nodes with service curves β1, β2, a further scaling function
S2, and another two nodes β3, β4. See Figure 2.8. We can alternatively do
the following operations:

(1) Move S1 and S2 to the egress. First, we convolve β1 and β2, respec-
tively β3 and β4 using Theorem 3. Let β12(t) = β1 ⊗ β2(t) and β34(t) =
β3 ⊗ β4(t). Second, we shift S2 to the egress and transform the service
curve β34(t) to the scaled version S−1

2 (β34(t)). Third, we convolve β12 and

S−1
2 (β34(t)), then shift S1 to the egress. Doing that the service curve of the

network becomes

β(t) = S−1
1 (β12 ⊗ S−1

2 (β34)(t)) .

46

2.4. Express Flow Transformations in Network Calculus

We can treat the network as a single node server and derive the performance
bounds using Theorem 1. Since in [64] the authors did not discuss the con-
catenation of multiple scaling functions in detail, we ignore the case first
move S1 to the egress and concatenate S1 and S2 and move. We will dis-
cuss this in the next two chapters. Another case to avoid is moving S1 to
the back of β12 and S−1

2 (β34) one by one, because it is generally worse than

firstly convolving the service curves and then move when we assume S−1
1 to

be super-additive.

(2) Move S1 and S2 to the ingress. It is analogous to (1) that we first
convolve the service curves. Second, we move S2 to the front of β12 and get
the service curve of the network

β(t) = S2(β12)⊗ β34(t) .

Third, we use Corollary 4 iteratively to derive the arrival curve of the scaled
arrivals and compute the performance bounds, again, using Theorem 1. Inter-
estingly, if two successive scaling functions are mutually inverse functions,
when they meet, they cancel out each other directly. For example, when a
pair of symmetric scaling functions - encoder SE and decoder SD concate-
nate each other, we have SD(SE(a)) = a.

Before this generalized modeling of flow transformation in network cal-
culus, there are other works that attempt to model flow transformation but
rather for specialized examples, like data loss, routing, or event stream trans-
lation. Chang makes the first attempt by introducing an element called router

to model data routing [36] respectively splitting, a case of flow transforma-
tion, which has a single data inputA(t), a control input P and an outputD(t)
such thatD(t) = P (A(t)) for all t. The control input determines which pack-
ets are selected to appear at the output. He derives the effect a router has on
arrival constraints using the (σ, ρ) format like shown in Section 2.2.1 (δ, γ-
upper constraints on router), but convolution-form expressions of end-to-end
service are not investigated. In comparison, a router P is a scaling function
with maximum scaling curve P (a) = γa + δ, and the routed (σ, ρ)-upper
constrained arrivals has arrival curve γρt+ γσ + δ, the same as Corollary 4.
Interestingly, Chang extends the deterministic router to the MGF bound rep-
resentation and also derives the MGF bound of its output (Lemma 7.5.1 in
[36]), which is an extension of router in the stochastic settings. However,
the application of this result in [36] is specialized, closely related to effec-
tive bandwidth theory, and still does not consider the convolution-form of the
end-to-end service. But we will generalize this result in Section 4.1.1 for
providing the stochastic end-to-end performance analysis.

47

2. Background on Network Calculus

Another important attempt is to model a special case of traffic regulating,
i.e., the so-called traffic clipping, using clipper, which is introduced by Cruz
[55]. The definition is a kind of “black-box” description. The authors only
observe the input and output and the goal is to find out how to drop packets
such that the output satisfies the specified arrival curve after clipping. Given
f ∈ F , a f -clipper is defined as a network element which satisfies two con-
ditions: (1) the departure is less than or equal to the arrival at all time t; (2)
f is the arrival curve of the accumulated departures. In [36] and [95] there
are also some extended results. In particular, Chang ([36, 37]) extends the f
function to a bivariate function F (s, t) and provides the construction of the
departure D(t) such that how to drop the packet at time t is thus decided.
Let D(t) = (min(A,F))∗(0, t), where F ∗ means closure of F defined as
limn→∞(minn≥0{F (n)}), F (0)(s, t) = 0 if s = t and ∞ otherwise, we have

D(t) = min

{

D(t− 1) + a(t), min
0≤s<t

{D(s) + F (s, t)}
}

.

Then the loss L(t) = a(t)− d(t) at time t is

L(t) = max

{

0, D(t− 1) + a(t)− min
0≤s<t

{D(s) + F (s, t)}
}

.

Dropping packets according to this equation we will get a departure with the
given bound F . An example to construct such a clipper given F (s, t) =
ρ(t− s) + σ is to use a work conserving server with constant capacity ρ and
a finite buffer σ. All the results about clipper orient themselves towards con-
structing the clipper such that the traffic is regulated according to the specified
bounds. They are not general and provide no further results on the multiple
nodes analysis, hence no expression of the network service when the traffic is
clipped along the path to the destination in the network.

Maxiaguine et. al. introduce the so-called workload curves [109, 110] into
the real-time calculus, a recent customization of network calculus for hard
real-time systems [139]. Workload curves are a special scaling element that
translates an event stream into specific requirements for a certain resource,
e.g., CPU time or link bandwidth, thus bridging between different subsys-
tems with heterogeneous resources. While [143] focuses on how to actually
compute such workload curves (e.g., based on finite-state machine represen-
tations of the actual processing components) and it basically just applies a
variant of Chang’s router element, it is interesting to note that this application
of scaling opened up an active research avenue for distributed real-time sys-
tems. Convolution-form expressions of end-to-end service are not yet dealt

48

2.4. Express Flow Transformations in Network Calculus

with in that work.

An interesting and somewhat related work can be found in [154]. In that
work, a calculus for the so-called information-driven networks is proposed.
The authors firstly use the Shannon entropy function to get information from a
given flow and then define the arrival curves and service curves relating with
this information flow instead of the data flow. Similarly, the calculus also
deals with flow processing inside the network, but represents a different di-
rection of research as it centers around the notion of information, whereas we
are willing to concern with the transport of data (albeit possibly transformed
inside the network).

Another two works are introduced in [23] and [9]. Both of them can be
viewed as the application of the scaling function and scaling curves. The for-
mer defines a function P to count the number of packets in a flow A(t) by
time t and accordingly defines the upper and lower bound of P , called packet
curves. It is again, a specialized definition for packetization, and the appli-
cation is not clear either. The latter also uses the same idea as the scaling
element, where it is called flow control functions, to model the control done
by the controller to the flows in the Software Defined Networks (SDN). The
only contribution is that it shows the modeling power of the scaling element.
The calculation of the backlog is repeating the existing results in network cal-
culus. The key question to be answered is how to know the bound of the flow
control functions according to the SDN flow table, which is not answered.
Again, both works do not consider the convolution-form expression of the
networks with flow transformation components along the flow path.

In fact, some existing works in network calculus have already touched the
flow transformation but not been aware of and further generalized it, because
they only study the individual application examples of the flow transforma-
tion and limit their scope within the corresponding application domain. Data
loss, for example, is studied. Most work combine this loss behavior with the
server model. One is given in [6], where the server model twists with dead-
line assignment and considers only certain constant loss fraction 1 − α. The
use of α to construct the service curve of the server with loss is unapparent,
concretely, the construction of the so-called loss operation L can not lead to
a clear relation with α (one special case to show the weakness can exist for a
discrete data model and some usual α values as α ∈ [0, 1]). And the meaning
of L(F ⊗ β)(t) used there is also ambiguous. However, this work considers
the concatenation of multiple servers with loss. Another work which con-
siders loss in network calculus is [81]. The authors explicitly express the
loss operation as an impairment process I(s, t). But in [81], this loss means
the loss of service capacity not the loss of data flow, thus not a case of flow

49

2. Background on Network Calculus

transformation.
So far, we discussed many potential work on the flow transformation in

network calculus. Some have shown how to perform an end-to-end anal-
ysis in the presence of flow transformations inside the network based on a
convolution-form expression of the end-to-end service. In that sense, the
scaling element goes beyond the others and also generalizes previous scaling
elements to some degree. The scaling element potentially widens the scope of
convolution-form networks to model more application scenarios, for example
the wireless sensor networks with in-network processing [133]. Nevertheless,
the scaling element approach still largely leaves open the limitation in scope
of convolution-form networks. The reason lies in the deterministic model-
ing which can very loosely capture the behavior of networks with stochastic
settings. For instance, modeling scaling elements with deterministic bounds
can be extremely impractical to capture loss processes in wireless networks,
since extreme situations must be accounted for (e.g., all data is lost), which
would further lead to trivial results (e.g., zero end-to-end delays). Other im-
practical situations include scenarios with random routing or load-balancing
and so on. In a word, many flow transformation behaviors happen inherently
very random. Only considering the extreme situation will be trivial and does
not match the nature. It thus becomes clear that in order to accurately capture
the inherent stochastic behavior of flow transformations in networks, we must
accordingly resort to stochastic modeling techniques. A good reference for
doing that is simply the methods used for modeling the random arrival process
- bounding function and MGF bound. But the referring is not straightforward.
The difference is when we define a process for scaling element, the index set
for such a scaling process may transfer from time domain to data domain.
Besides, since the flow transformation violates the losslessness assumption
for defining virtual delay, in other words, the flow we observe at different
nodes within the network is always changing, the main challenge still lies in
finding the stochastic convolution-form representation of the network service
for this changing flow at some observing point, and in reverse, this may also
decide the choice of the form to characterize the stochastic scaling element.
The modeling power of different choices of the scaling forms will perform
differently in diverse applications.

50

Chapter 3

Stochastic Data Scaling

Element - Bounding

Functions

In this chapter, we develop the stochastic data scaling in the direction of sto-
chastic sample path bounding, which generally expresses the flow transforma-
tion with certain random nature and directly adapts the deterministic analysis
to provide the stochastic end-to-end performance bounds. We first define the
stochastic scaling element and the bounding functions. Then we present the
commutation theorem, which enables the convolution-form expression of the
networks with the presence of the flow transformations. To validate the re-
sults, we apply them to the most important application scenarios of the flow
transformation - dynamic demultiplexing and load balancing.

The main contribution is that, after finding a way to support the stoch-
astic sample path descriptions of the scaling element, we keep the alterna-
tive system expression (Theorem 7) in the stochastic setting which still al-
lows us to change the order of scalers and servers, and thus get the stochastic
convolution-form network service curve. We also show the modeling power
of this form of stochastic scaling element and reveal the challenges we might
face when analyze concrete applications. The results presented in this chapter
are from the joint work with J. Schmitt and I. Martinovic (see [151]).

51

3. Stochastic Data Scaling Element - Bounding Functions

3.1 Stochastic Data Scaling

We provide fundamental results on stochastic data scaling in this section. We
will introduce stochastic versions of minimum and maximum scaling curves.
For some results, the deterministic arguments from Section 2.4 can be easily
adapted, for others some care needs to be taken, as in the deterministic setting,
it is convenient and not too restrictive to assume bijectivity of the scaling
functions. First, we need to define however, the notion of a stochastic scaling
process of which scaling functions are its realizations.

Definition 14. (Stochastic Scaling Element - Scaling Sample Paths) A stoch-
astic scaling element S is described by a stochastic process whose ensemble
(all possible sample paths or realizations of S) is a set of scaling functions
{S (a, ω) : ω ∈ IS}, where IS is some index set. We depict it in Figure 3.1.

Figure 3.1: Stochastic scaling element.

Next, we provide the definitions for stochastically relaxed versions of
maximum and minimum scaling curves.

Definition 15. (Stochastic Scaling Curves) Let S be a stochastic scaling el-

ement, two functions Sε, S
ε ∈ F are called stochastic minimum and maxi-

mum scaling curves of S, respectively, if for all b ≥ 0

Pr

(

inf
0≤a≤b

{

S(b)− S(a)− Sε(b− a)
}

≤ 0

)

≤ ε ,

Pr

(

sup
0≤a≤b

{

S(b)− S(a)− S
ε
(b− a)

}

≥ 0

)

≤ ε .

Here, ε and ε denote the violation probabilities for stochastic minimum and
maximum scaling curves, respectively.

Note that the stochastic scaling curve properties are defined over sample
paths (scaling functions) as realized by the respective scaling process. In the
context of stochastic arrival curves this has also been coined as sample-path
effective envelope (see Section 2.3.1). We fix the ending point as b such that
the space is limited, which facilitates deriving a bounded probability.

52

3.1. Stochastic Data Scaling

Figure 3.2: Alternative systems under stochastic setting.

In the deterministic case, Corollary 3 provides a way to calculate scaling
curves for the inverse scaling function based on knowledge of the scaling
curves for the original scaling function. We can directly transfer these results
under the following definitions.

Definition 16. (Bijectivity of Stochastic Scaling Elements) A stochastic scal-
ing element S is said to be bijective if ∀ω ∈ IS the respective scaling function
S(a, ω) is bijective.

Definition 17. (Inverse Stochastic Scaling Element) Given a bijective stoch-
astic scaling element S with ensemble {S (a, ω) : ω ∈ IS} we define its in-
verse stochastic scaling elementS−1 by the ensemble

{
S−1 (a, ω) : ω ∈ IS

}
.

Here, it is assumed that S and S−1 are realized together, based on the same
random experiment, such that it is justified to state that S−1 ◦S = S ◦S−1 =
id.

Now we turn to the presumably most important result, the stochastic gen-
eralization of the alternative systems theorem.

Theorem 8. (Stochastically Scaled Servers – Alternative Systems) Consider

the two systems in Figure 3.2 and let F be the input function. System (a)

consists of a server with deterministic minimum service curve β and maxi-

mum service curve γ whose output is scaled by a stochastic scaling element

S, for which we have stochastic minimum and maximum scaling curves Sε

and S
ε

with violation probability ε and ε, respectively. System (b) consists

of a stochastic scaling element S, which has stochastic minimum and maxi-

mum scaling curves Sε and S
ε

with violation probability ε and ε, and whose

output is input to a server with deterministic minimum and maximum service

curves βS and γS , respectively.

(1) Given system (a) the lower and upper bounds of the output function of

system (b), that are S(F) ⊗ βS and S(F) ⊗ γS , respectively, are also valid

stochastic lower and upper bounds for the output function of system (a), i.e.,

∀t ≥ 0 :

Pr(S (F ′(t)) ≥ (S(F) ⊗ βS)(t)) ≥ 1− ε ,

53

3. Stochastic Data Scaling Element - Bounding Functions

Pr(S (F ′(t)) ≤ (S(F) ⊗ γS)(t)) ≥ 1− ε ,

if system (b) consists of the same stochastic scaling element as in system (a)

together with service curves

βS = Sε(β) ,

γS = S
ε
(γ) .

(2) Assume bijectivity of S. Given system (b) the lower and upper bounds

of the output function of system (a), that are S (F ⊗ β) and S (F ⊗ γ), re-

spectively, are also valid stochastic lower and upper bounds for system (b),

i.e., ∀t ≥ 0 :

Pr((S (F (t)))
′ ≥ (S(F ⊗ β))(t)) ≥ 1− ε ,

Pr((S (F (t)))
′ ≤ (S(F ⊗ γ))(t)) ≥ 1− ε ,

if system (a) consists of the same stochastic scaling element as in system (b)

together with service curves

β = S−1
ε (βS) ,

γ = S−1
ε
(γS) .

Here S−1
ε and S−1

ε
are the respective stochastic scaling curves of inverse

stochastic scaling S−1.

Proof. Some preliminary remarks: Note that a stochastic scaling curve Sε

only bounds a subset of all possible scaling functions from the stochastic
scaling element S. Let us denote that subset by

SSεapplies
=
{

S (a, ω) : ω ∈ IS , ∀x ≥ 0, Sε ≤ S(x+ a)− S(x)
}

⊆ S .

Note that Pr(SSεapplies
) ≥ 1− ε, as well as that Sε is a deterministic mini-

mum scaling curve for each scaling function S(a, ω) ∈ SSεapplies
.

We now start proving the first part of the theorem (going from system
(a) to system (b)). We begin with the stochastic lower bound on the output
function of the composite system.

For system (a), we know from the minimum service curve property that

F ′ ≥ F ⊗ β .

54

3.1. Stochastic Data Scaling

Assuming that the stochastic scaling element realizes a scaling functionS(a, ω)
∈ SSεapplies

, we can deterministically conclude that

S(F ′(t)) ≥ S(F ⊗ β))(t)

= S

(

inf
0≤s≤t

{F (t− s) + β(s)}
)

= inf
0≤s≤t

{S (F (t− s) + β(s))}

= inf
0≤s≤t

{S(F (t− s)) + S (F (t− s) + β(s)) − S(F (t− s))}

≥ inf
0≤s≤t

{

S(F (t− s)) + Sε(β(s))
}

=
(

S(F)⊗ Sε(β)
)

(t) .

Now consider system (b). Its output function can be bounded as follows:

(S(F (t)))
′ ≥ (S(F)⊗ βS) (t) .

If we let βS = Sε(β) in system (b), we get the same bound on the output
function based on the assumption that S(a, ω) ∈ SSεapplies

, which holds
with probability 1− ε. Hence, we obtain ∀t ≥ 0 :

Pr(S (F ′(t)) ≥ (S(F) ⊗ βS)(t)) ≥ 1− ε .

Establishing the connection between the upper bound on the output functions
of system (a) and (b) follows as an immediate variation.

Now for the second part of the theorem: going from system (b) to system
(a). Again, we start with the lower bound on the output function of the com-
posite system. Similar to above, we introduce the subset of scaling functions
for which their inverse adheres to S−1

ε as

SS−1
εapplies

=
{

S(a, ω):ω∈IS , ∀x ≥ 0, S−1
ε≤S−1(x+ a)−S−1(x)

}

⊆S .

For system (b), we know from the deterministic minimum service curve prop-
erty that

(S (F))
′ ≥ S(F)⊗ βS .

Assuming that the stochastic scaling element realizes a scaling functionS(a, ω)
∈ SS−1

εapplies
, we can deterministically conclude that (since each inverse

55

3. Stochastic Data Scaling Element - Bounding Functions

scaling function is wide-sense increasing)

S−1
(
(S (F (t)))

′) ≥ S−1 ((S(F)⊗ βS) (t))

= S−1

(

inf
0≤s≤t

{S(F (s)) + βS(t− s)}
)

= inf
0≤s≤t

{
S−1 (S(F (s)) + βS(t− s))

}

= inf
0≤s≤t

{
S−1 (S(F (s)))

+S−1 (S(F (s)) + βS(t− s))− S−1 (S(F (s)))
}

≥ inf
0≤s≤t

{
S−1 (S(F (s))) + S−1

ε (βS(t− s))
}

=
(
F ⊗ S−1

ε (βS)
)
(t) .

Since S ◦ S−1 = id, we can conclude from the above inequality that

(S (F (t)))
′ ≥ S

((
F ⊗ S−1

ε (βS)
)
(t)
)
.

Now consider system (a). Its output function can be bounded as follows:

S(F ′(t)) ≥ S (F ⊗ β) (t) .

If we let β = S−1
ε (βS) in system (a), we get the same bound on the output

function based on the assumption that S(a, ω) ∈ SS−1
εapplies

, which holds

with probability 1− ε. Hence, we obtain ∀t ≥ 0 :

Pr((S (F (t)))
′ ≥ (S(F ⊗ β))(t)) ≥ 1− ε .

Establishing the connection between the upper bound on the output func-
tions of system (a) and (b) follows as an immediate variation.

As in the deterministic case this alternative system theorem allows to
move scaling elements over service curve elements in the stochastic setting.
These enable to perform an efficient end-to-end analysis using the concatena-
tion theorem as much as possible.

In the following corollary, we state the effect stochastic scaling elements
have on the arrival constraints of an input function.

Corollary 5. (Arrival Constraints under Stochastic Scaling) Let A(t) be an

arrival process with stochastic arrival curve αεα that is fed into a stochastic

scaling element S with stochastic maximum scaling curve S
ε
. A stochastic

56

3.1. Stochastic Data Scaling

arrival curve for the scaled output from the scaling element is given by

αS = S
ε
(αεα) ,

and it applies ∀t ≥ 0 that

Pr (S(A(t)) ≤ (S(A) ⊗ αS) (t)) ≥ 1− ε− εα .

If S−1 has a maximum scaling curve S−1
ε
, and given a stochastic arrival

curve for the scaled output process α
εαS

S , a stochastic arrival curve for the

input can be given as

α = S−1
ε (
α
εαS

S

)
,

and it applies ∀t ≥ 0 that

Pr (A(t) ≤ A⊗ α(t)) ≥ 1− ε− εαS
.

Proof. First we choose a sample path function F (t) of the arrival process
A(t) which does not violate the stochastic arrival curve αεα and fix t. Let
0 ≤ s ≤ t.

From the stochastic maximum scaling curve property we have

Pr

(

sup
0≤s≤t

{

S(F (t)) − S(F (s)) − S
ε
(α(t − s))

}

≥ 0

)

≤ Pr

(

sup
0≤s≤t

{

S(F (t)) − S(F (s)) − S
ε
(F (t)− F (s))

}

≥ 0

)

≤ ε .

Here we used that αεα is an arrival curve of F and that S
ε

is wide-sense
increasing. Using sample path argument and Boole’s inequality establishes

αS = S
ε
(αεα) as a stochastic arrival curve of the scaled process S(A(t))

from the scaling element with probability ≥ 1− ε− εα.

Now, for the second part of the corollary, we first construct

F (t)− F (s) = S−1(S(F (t))) − S−1(S(F (s))) . (3.1)

Then use Eq. (3.1) into the definition of the stochastic maximum scaling curve
of S−1. The rest follows directly the argument in the first part.

57

3. Stochastic Data Scaling Element - Bounding Functions

...

Figure 3.3: A n nodes tandem network traversed by a flow of interest.

3.2 End-to-end Performance Bounds

In this section, we now provide some insights in the scaling of the delay
bounds when an increasing number of nodes is traversed by a flow and thereby
also demonstrate how to apply our results in more general settings. We depict
the n nodes scenario in Figure 3.3. We assume there is a stochastic scaling
element between every two servers. For n nodes, we have n − 1 scalers,
Si, i = 1, 2, . . . , n − 1. For the case there is no flow transformation hap-
pening between two servers, we either consider there were a “transparent”
scaling element with scaling function S(a) = a for any a ≥ 0, or regard
the adjacent servers as one single server by convolving their service curves
before we move them. The stochastic scaling elements are given according
to Definition 14 and 15, i.e., for each Si, there are minimum and maximum

scaling curves Siεi
and Si

εi ∈ F , such that for all b ≥ 0

Pr

(

inf
0≤a≤b

{

Si(b)− Si(a)− Siεi
(b− a)

}

≤ 0

)

≤ εi ,

P r

(

sup
0≤a≤b

{

Si(b)− Si(a)− Si
εi
(b− a)

}

≥ 0

)

≤ εi .

We point out, there are several alternatives for the end-to-end analysis. Next
we compare them for the n nodes network. Since the meaning of the end-
to-end backlog bound is quite unclear, i.e., we can merely derive the backlog
bounds node by node, we ignore the backlog bounds and only compare the
methods for analyzing delay bounds.

First, we provide an “idealistic” analysis for reference purposes. When
demultiplexing a flow the number of generated subflow is usually dynamic,
we however assume an homogeneous situation where this number is equally
determined at every demultiplexer, denoted by k. For a hierarchical feed
forward network this is a full k-nary tree. So for an idealistic analysis we
assume that we exactly and deterministically know the scaling functions to
be Si(F) = 1

kF , and thus their scaling curves Si(a) = Si(a) = 1
ka (for a

not full k-nary tree, we can simply use different ki, ki ≤ k). We can invoke
(trivially) Theorem 7 (in both directions to move the scaler, to the front or the

58

3.2. End-to-end Performance Bounds

back) and Corollary 4 to obtain a delay bound as (further applying Theorem 1
and 3)

dideal,ingr

= h
(

Sn−1(· · ·S1(α) · · ·), Sn−1(· · ·S2(S1(β1)⊗ β2) · · · ⊗ βn−1)⊗ βn

)

= h

((
1

k

)n−1

α,

(
1

k

)n−1

β1 ⊗
(
1

k

)n−2

β2 ⊗ · · · ⊗ 1

k
βn−1 ⊗ βn

)

or

dideal,egr =h
(

α, β1 ⊗ S−1
1 (β2 ⊗ · · ·S−1

n−2(βn−1 ⊗ S−1
n−1(βn)) · · ·)

)

=h
(
α, β1 ⊗ kβ2 ⊗ · · · ⊗ kn−1βn

)
.

Clearly, none of the following analysis alternatives can go below these values
as we now make more realistic assumptions on the knowledge we have about
the scaling process. Both dideal,ingr and dideal,egr serve as the target value
for the following alternatives. Consider an example that the arrival curve is a
token-bucket γr,b(t) = rt+b and the service curve is the constant rate service

βi(t) = Rit. Using the results in Section 2.2.3 we get dideal,ingr =
(1

k)
n−1

b

Ringr ,

where Ringr = min
{(

1
k

)n−1
R1,

(
1
k

)n−2
R2, · · · ,

(
1
k

)0
Rn

}

, respectively,

dideal,egr = b
Regr , whereRegr = min

{
R1, kR2, · · · , kn−1Rn

}
. Clearly the

bounds are equal.

Next we show the deterministic delay bound, which can be regarded as
another reference bound. We ignore the stochastic information known on the
scaling process and put the deterministic bounds on the scaling as Si = 0 and

Si = id. So we can directly ignore the scaling elements and get

ddet = h(α, β1 ⊗ β2 ⊗ · · · ⊗ βn) .

This only applies for the case that the flow is clipped. Otherwise when the
scaled flow is enlarged, we have no trivial maximum scaling curve and still
need to use the scaling process information to construct it. Certainly, the de-
terministic bound is conservative, because it essentially assumes that all of
the traffic go to a single egress point of the network. Note that the determin-
istic scaling becomes excessively pessimistic if a large number of nodes are
involved.

Now, we use all our “weapons” and provide an end-to-end analysis under
stochastic scaling bounds. Here, using Th. 8 and shifting scaling elements

59

3. Stochastic Data Scaling Element - Bounding Functions

conveniently we are able to leverage again from the concatenation theorem.
We have already seen that, we have two options, moving the scalers to the
ingress or the egress of the overall system. But in further details, we have
more options when moving the scalers. See Figure 3.3 again, if we move for
example S2 to the ingress, we will face the concatenation of S1 and S2. We
can treat it in two ways: the first we can put the effect of the scalers to the
next neighbor element one by one (S2(S1(β1))); the second we can regard
this concatenation of scalers as one single scaler (S1 ◦ S2 with stochastic

scaling curves S1 ◦ S2
ε12

and S1 ◦ S2ε12
, where ε12 and ε12 are the violation

probabilities to be given). So in the next steps we give the delay bounds for
the cases of both moving directions and further for each case the results of
two treatments of the concatenated scalers.

1. Move Stochastic Scaling to ingress
a) nested scalings

If move the scaler from S1 to Sn−1, we have

dstoch,e2e = h

(

Sn−1
εn−1

(· · ·S1
ε1
(α) · · ·),

Sn−1εn−1
(· · ·S2ε2

(S1ε1
(β1)⊗ β2) · · · ⊗ βn−1)⊗ βn

)

. (3.2)

If move the scaler from Sn−1 to S1, we have

dstoch,e2e = h

(

Sn−1
εn−1

(

Sn−2
εn−2

(

· · ·
(

S1
ε1
(α)
)

· · ·
))

,

Sn−1εn−1

(

Sn−2εn−2

(

· · ·
(

S1ε1
(β1)

)

· · ·
))

⊗Sn−1εn−1

(

Sn−2εn−2

(

· · ·
(

S2ε2
(β2)

)

· · ·
))

⊗ · · · ⊗ Sn−1εn−1
(βn−1)⊗ βn

)

.

with probability

if independent ≥
n−1∏

i=1

(1 − εi − εi) ;

60

3.2. End-to-end Performance Bounds

with Boole′s inequality ≥ 1−
n−1∑

i=1

(
εi + εi

)
.

Clearly, the former is better. The proof easily follows that for example
S(β1 ⊗ β2) ≥ S(β1) ⊗ S(β2) for a super-additive minimum scaling
curve S. The reason to assume a super-additive S is already given in
Corollary 2.

b) concatenated scaling

If move the scaler from S1 to Sn−1, the service curve part is not dif-
ferent from Eq. (3.2). But for the arrival curve part we can use the

concatenation form S1 ◦ S2 ◦ · · · ◦ Sn−1
ε12···n−1

as the stochastic max-
imum scaling curve.

The probability satisfies

if independent ≥ (1− ε12···n−1 − (1−
n−1∏

i=1

(1− εi)) ;

with Boole′s inequality ≥ 1− ε12···n−1 −
n−1∑

i=1

εi .

If move the scaler from Sn−1 to S1, we have

dstoch,e2e= h

(

S1 ◦ S2 ◦ · · · ◦ Sn−1
ε12···n−1

(α), βn ⊗ Sn−1εn−1
(βn−1)

⊗Sn−2 ◦ Sn−1εn−2,n−1
(βn−2)⊗ · · ·

⊗S1 ◦ S2 ◦ · · · ◦ Sn−1ε12···n−1
(β1)

)

.

Because of the inherent dependency among these concatenated scalers,
the probability satisfies only using Boole’s inequality that

prob. ≥ 1− ε12···n−1 − εn−1 − εn−2,n−1 − · · · − ε12···n−1 .

2. Move Stochastic Scaling to egress
a) nested scalings

61

3. Stochastic Data Scaling Element - Bounding Functions

If move the scaler from Sn−1 to S1,

dstoch,e2e = h

(

α, β1 ⊗ S−1
1 ε1

(

β2 ⊗ · · ·S−1
n−1εn−1

(βn) · · ·
))

.

If move the scaler from S1 to Sn−1,

dstoch,e2e = h

(

α, β1 ⊗ S−1
1 ε1

(β2)⊗ S−1
1 ε1

(

S−1
2 ε2

(β3)
)

⊗ · · ·

⊗S−1
1 ε1

(

S−1
2 ε2

(

· · ·S−1
n−1εn−1

(βn) · · ·
)))

.

The probability satisfies

if independent ≥
n−1∏

i=1

(1− εi) ;

with Boole′s inequality ≥ 1−
n−1∑

i=1

εi .

b) concatenated scaling

Only moving scaler from S1 to Sn−1 applies.

dstoch,e2e ≤ h(α, β1 ⊗ S−1
1 ε1

(β2)⊗ (S1 ◦ S2)
−1

ε12
(β3)

⊗ · · · ⊗ (S1 ◦ S2 ◦ · · · ◦ Sn−1)
−1

ε12···n−1
(βn)) .

with probability

if independent ≥ (1 − ε1)(1− ε12) · · · (1− ε12···n−1) ;

with Boole′s inequality ≥ 1−
∑

ε12···n−1 .

We point out that these bounds may not apply simultaneously for some
cases and thus are not necessarily equal. The reason is that for different ap-
plication scenarios, moving scalers to the ingress and the egress possibly have
different meanings. For some scenarios moving the scalers to the ingress is
physically meaningful whereas for the others to the egress is. We will see this
explained in Chapter 4 and 5. However, since moving to a not so meaningful
direction can actually be seen as a virtual equivalent system, we can still cal-

62

3.3. Modeling Dynamic Demultiplexing

culate both and choose the one with better result. Another point to note is that
the concatenated scaling is essentially not different from the nested scaling,
but only a specialization of it. We provide this result because we possibly get
a better bound when we treat the adjacent scalers as a single conjuncted one
instead of applying the scaler one by one. We ignore the details here, which
are discussed in [151].

As a contrast we show a straightforward node-by-node (nbn) delay bound,
which fundamentally differs from the delay bounds obtained by using Theo-
rem 8 and commuting the scalers and servers. We know the stochastic arrival

curve of the flow scaled by Si and arrived at βi+1 is αi+1 = Si
εi
(α

εαi

i ⊘ βi).
Recursively using the sample path bound and Boole’s inequality we get

dstoch,nbn = h(α, β1) + h(S1
ε1
(α⊘ β1), β2) + · · ·+

h(Sn−1
εn−1

(Sn−2
εn−2

(· · · (S1
ε1
(α⊘ β1)⊘ β2) · · ·)⊘ βn−1), βn) .

3.3 Modeling Dynamic Demultiplexing

Queueing networks are typically subject to demultiplexing operations, whereby
network nodes split flows into multiple subflows. This concept captures many
relevant network aspects such as packet loss, multi-path routing, load balanc-
ing, or flow control. In this section, we introduce a new demultiplexing ele-
ment model with the benefit of the stochastic scaling element which can ac-
commodate for dynamic demultiplexing decisions. The idea is to capture the
frequent uncertainty about demultiplexing decisions within bounds of scal-
ing functions for each of the outputs of the demultiplexer. We do not use the
service curve or dynamic server to model it as the decision delay can usually
be ignored comparing with the other delays. In order to illustrate the ver-
satility of the new demultiplexing element, we later provide several sample
application scenarios.

3.3.1 The Demultiplexer

The demultiplexer is illustrated in Figure 3.4. Note, we use the sample path
expressions for the ease of exposition when exhibiting the modeling. The
demultiplexer is an element with one input and multiple outputs. The actual
distribution of the input flow over the output flows is determined according
to a vector of scaling functions ~S, i.e., we have for each output i = 1, . . . , n

63

3. Stochastic Data Scaling Element - Bounding Functions

Figure 3.4: The demultiplexer.

that its output function Fi = Si(F) and furthermore

F =

n∑

i=1

Fi =

n∑

i=1

Si(F) .

Hence, mathematically the demultiplexer provides the following mapping

Σ : F → Fn with F → Σ(F) = ~S(F) .

If the demultiplexing is not static, we will usually not know ~S explicitly,
but have to work with bounds on it, the scaling curves. In many applications
as discussed in the subsequent subsections, it is also very restrictive to assume
that we can bound the demultiplexer deterministically. While there are always
deterministic scaling curves, they may become the trivial alternatives of Si =
F and Si = 0, which certainly results in a very pessimistic performance
analysis. Hence, what is required are stochastic bounds on a demultiplexer’s
behavior. The required fundamental stochastic generalization of scaling in
network calculus was provided in Section 3.1.

3.3.2 Application 1: Load Balancing

A straightforward use of the demultiplexer is the case of load balancing over
a number of servers as illustrated in Figure 3.5. Very often load balancing
either makes randomized decisions, i.e., scheduling the next work unit on a
server from the pool based on some random distribution, or demultiplexing
is based on some state which we can only describe stochastically. The uncer-
tainty about load balancing decisions may be due to data dependent switching
decisions, information hiding by a network provider, or simply due to the im-

64

3.3. Modeling Dynamic Demultiplexing

D
E
M
U
X

Figure 3.5: A load balancing model.

Figure 3.6: Load balancing from the perspective of subflow i.

practicality of obtaining all necessary switching information. In any case, the
only sensible option to characterize the scaling of each of the outputs and thus
the demultiplexing is via stochastic bounds. Examples for load-balancing sys-
tems that fall in this category are abundant (see, e.g., [87, 159, 141, 135] for
recent systems from the networking and parallel computing domain).

In Figure 3.6, we also provide a view on the load-balancing model from
the perspective of subflow i. This shows, provided that we can set up similar
results to deterministic data scaling for the stochastic setting, that an end-
to-end network calculus analysis is again possible for each subflow. Note
that for each subflow the whole input flow needs to be taken into account
as it drives the scaling element of the subflows (→ Si(F)). As a concrete
example, let us consider a simple weighted random load balancing. Assume
n = 3, the distributions of the load are according to Bernoulli processes.
Let the weights be 0.6, 0.3, 0.1 for β1, β2, β3. We can use stochastic scaling
element to model each process and construct the stochastic scaling curves for
these scaling elements, in order to capture the randomness. So between β and
β1 there is stochastic scaling element with Bernoulli scaling process B(0.6).
We will see how to construct the stochastic scaling curves and so thus analyze
the performance for this application in Section 3.4.

3.3.3 Application 2: Lossy Links

A less obvious application of the demultiplexer is in networks with lossy
links, a simple tandem scenario is shown in Figure 3.7. Here, the ground

65

3. Stochastic Data Scaling Element - Bounding Functions

D
E
M
U
X

D
E
M
U
X

Figure 3.7: A tandem network with lossy links.

D
E
M
U
X

D
E
M
U
X

Figure 3.8: A tandem network with lossy links and retransmissions.

symbol means that data units are lost. Even more obviously here than in the
load-balancing case, a deterministic bound on the scaling behaviour repre-
sents a mismatch and will only result in trivial scaling curves for the outputs.
In particular, a deterministic bound would mean that all data units are lost,
thus not providing any non-trivial insight in the system’s performance. A sto-
chastic generalization of scaling curves is inevitable for a system consisting
of lossy links. The stochastic scaling models introduced in this chapter and
Chapter 4 can deal with this. The key point is to find the suitable scaling
processes to model the loss process, e.g., a Gilber-Elliot model as the scaling
process. Given the parameters - good/bad state error rate and state transi-
tion probabilities, we can construct the stochastic scaling curves. This is also
shown in Section 3.4.

Under the assumption that each link uses retransmissions to cater for data
loss we can modify the model according to Figure 3.8. We will address this
model in Chapter 6.

66

3.4. Application: Delay Bounds under Uncertain Load Balancing

3.4 Application: Delay Bounds under Uncertain

Load Balancing

The point of this section is to illustrate how we can apply the new demul-
tiplexing element together with the results from the previous section in the
case of a load-balancing system. In particular, we assume that we have an
outsider view on the network and do not know how the switching decisions
are made at each of the demultiplexing points. So, we try to find stochas-
tic delay bounds under uncertainty about the load balancing decisions made
inside the network.

For ease of exposition, the example calculations are kept as simple as
possible without loss of generality, wherever possible. First, we compare in a
simple scenario different analysis alternatives for determining delay bounds
under uncertain load-balancing based on: deterministic scaling, stochastic
scaling with a node-by-node analysis, and stochastic scaling with an end-to-
end analysis. As we shall see, care needs to be taken on how to actually use
the theoretical results derived in the previous sections. In fact, we demon-
strate that achieving the best possible stochastic delay bound with a given
violation probability requires us to solve a non-trivial optimization problem.
For larger scenarios, solving the respective optimzation problem is out of
scope for this chapter, yet we provide fallback options to achieve approxi-
mate results and illustrate the increasing benefit of using a stochastic instead
of a deterministic analysis when the number of nodes grows.

3.4.1 Scenario and Preliminaries

The network scenario we assume is depicted in Figure 3.9. We have aggregate
flows that enter a network at a certain ingress point and while traversing the
load balancing network are demultiplexed inside the network, thus resulting
in many potential egress flows. Consider for example the dynamic load bal-
ancing of cloud computing [114]. The flows can be hierarchically balanced
to the lower level nodes (virtual machines or hosts). And the ingress node can
be either centralized or distributed. Fix an ingress node, or in other words,
from the perspective of a single aggregate flow, the network looks like a tree
as shown also in Figure 3.9.

The demultiplexing or, more concretely, the load-balancing decisions are
assumed not to be under the control of the flow, or more concretely, the corre-
sponding user. These decisions are either done by the provider of the network
or they are just random processes, for example depending on the contents
of the data units. Formally, the demultiplexing decisions can be modeled as

67

3. Stochastic Data Scaling Element - Bounding Functions

Figure 3.9: Network scenario of load-balancing.

the ratios Wij of the incoming traffic at node i that is forwarded to node j,
where the Wij are random variables with support [0, 1] and it applies that
∑

j Wij ≤ 1. The user, however, still wants to be able to compute delay
bounds for all of its subflows (corresponding to different egress points from
the network) even under uncertainty about the Wij , i.e., the load-balancing
decisions. Different options to model the uncertainty may be assumed. Here,
the main question we should answer is: on which data granularity should
the load-balancing decision be made? To get a tentative answer is not hard.
We can not define this random ratio for the cumulative traffic we observe.
Because on one hand, the random ratios for two overlapped amount of ac-
cumulated data will be dependent; on the other hand, if we used scaling
elements to model the load-balancing decisions, we need them to be non-
decreasing and obviously, this is not satisfied. Let us, for example, assume
Wij,k ∼ U(0, 1), k ≥ 0, where U means uniform distribution. To clarify,
when we use Wij , we need a further index k to differ different random vari-
ables effecting on different data aggregations. For example, we use Wij,1 for
data aggregation a + b, while Wij,2 for a, a, b > 0. Then we possibly get
Wij,1 · (a + b) < Wij,2 · (a), which is not non-decreasing any more. An-
other possible solution is to fix a random ratio for all the time, which however
shows its limitation by the fact that the scaling process can not be an ergodic
one. Hence, it is reasonable to model this dynamic decision as random vari-
ables effecting onto each separated data amount.

For ease of exposition, but actually mostly without loss of generality, we
further constrain our discussion on fully occupied binary trees for the flow
under analysis as depicted in Figure 3.10. This has the nice side effect that
each of the subflows faces the same situation with respect to the delay anal-
ysis. Hence, it does not matter which one we pick and we can actually focus
on a scenario as depicted in Figure 3.11. We use the stochastic scaling el-

68

3.4. Application: Delay Bounds under Uncertain Load Balancing

1

5

2
4

6

7

3

D
E
M
U
X

Figure 3.10: Full binary tree.

Figure 3.11: Subflow from full binary tree.

ement between servers to model the dynamic load-balancing. Before step
further, we see that, for the fully occupied binary tree selecting all Wij = 0.5
would be optimal with respect to minimizing the worst-case delay over all
subflows. While this selection is not under our control (the Wij are assumed
to be random variables), it will still serve as an idealistic reference to assess
our alternative analysis methods.

From now on we define the actual scaling elements from the concrete
scenario in Figure 3.11 and construct the maximum and minimum scaling
curves, such that we can derive the end-to-end delay bounds. Before that, we
claim to use a simplification of denotation. Instead of Wij,k we simply use
Wk for a general scaler (not necessarily between node i and j). And in order
to match the index name with the data sequence, we replace the index k with
i. As an immediate interpretation of above discuss, we define S(a) as the sum
of a sequence of decision random variables Wi’s on the ordered sequence of
the separations of a, formally, if we define the length of the i-th separation of
a as ai, i = 1, 2, . . . and

∑

i≥1 ai = a, then

S(a) =
∑

i≥1

aiWi . (3.3)

For the construction of the scaling curves, we use a simpler definition for the
ease of exposition. We assume the data model to be discrete model and all the
ai’s be normalized to 1. That means, we scale each bit, or each packet, or each
equally-sized data unit. Hence, S(a) =

∑a
i=1Wi. To construct the stochastic

maximum and minimum scaling curves, we imitate the construction of the

69

3. Stochastic Data Scaling Element - Bounding Functions

stochastic sample path arrival curve provided in Section 2.3.1. The main
difference here is the index set is changed from time domain to the space
(data) domain. So we can not simply use the traffic model for the scaling
element, which is a kind of control sequence. But there we utilized the MGF
functions (bounds) for an arrival process, while here we do the same. Instead
of unreasonably using diverse concrete process models for a control process,
we classify Wi’s into two sets, i.i.d. and non-i.i.d. , and concretely use the
MMP to represent those non-i.i.d. scenarios without loss of generality. We
show the derivation of the former case, while the latter one follows the similar
steps in [36] and will also be discussed in the next chapter.

Lemma 1. (MGF and Laplace Bounds of a Scaling Process) Consider scal-

ing process S(a) =
∑a

i=1Wi and Wi’s are i.i.d. , its MGF MS(a)(θ) and

Laplace function MS(a)(−θ) satisfies for θ > 0 that

MS(a)(θ) ≤ eθρS(θ)a ,

MS(a)(−θ) ≤ e−θρS(−θ)a ,

where ρS(θ) =
1
θ logMW1(θ) and ρS(−θ) = − 1

θ logMW1(−θ).

For the MMP case, ρS(θ) = 1
θ log sp(φ(θ)r), where sp is the spectral

radius of the matrix φ(θ)r, φ(θ) is the diagonal matrix using the MGFs of
processes to be modulated in each state, and r is the transition matrix of the
Markov process. See details in [36]. Although easy, since the argument is
quite often used in this thesis we show the proof.

Proof. E
[
eθ
∑a

i=1 Wi
]
=
(
E
[
eθW1

])a
= ea logMX1 (θ) = eθ

1
θ
logMX1 (θ)·a.

The other part follows directly.

Now we construct the stochastic sample path scaling curves.

Lemma 2. (Construction of the Stochastic Maximum and Minimum Scaling

Curves) If a scaling element S(a) has the MGF and Laplace bounds, i.e.,

MS(a)(θ) ≤ eθρS(θ)a and MS(a)(−θ) ≤ e−θρS(−θ)a, for δ, σ, δ, σ > 0,

S
ε
(a) respectively Sε(a) is the stochastic maximum respectively minimum

scaling curve, if

S
ε
(a) = (ρS(θ) + δ)a+ σ ,

Sε(a) = (ρS(−θ)− δ)a− σ ,

70

3.4. Application: Delay Bounds under Uncertain Load Balancing

with violation probabilities

ε =
e−θσ

θδ
,

ε =
e−θσ

θδ
.

Proof. We first prove the maximum curve. For all b ≥ 0 we have

Pr

(

sup
0≤a≤b

{

S(a, b)− S
ε
(b− a)

}

≥ 0

)

≤
∑

0≤a<b

Pr
(

S(a, b)− S
ε
(b− a) ≥ 0

)

≤
∑

0≤a<b

e−θS
ε
(b−a)E

[

eθS(a,b)
]

≤
∑

0≤a<b

e−θ(δ(b−a)+σ)

≤ e−θσ

θδ
.

In the second line we used Union bound. In the third we used Chernoff bound.
We get the last line if we let b go to infinity. Letting the last term equal to ε
completes the proof of the maximum curve. The proof for the minimum curve
follows directly when we consider

Pr (S(a, b)− Sε(b− a) ≤ 0) = Pr (−S(a, b) ≥ −Sε(b− a)) .

3.4.2 Comparison of Alternative Analyses

We now compare different alternatives we have for the end-to-end delay anal-
ysis of the uncertain load-balancing scenario. We analyze the network like
shown in Figure 3.11 but with n nodes and n − 1 scalers between every two
nodes. For the illustrative purpose we limit n to 10, i.e., n = 2, 3, . . . , 10.
We assume the violation probability of the end-to-end delay bound as ε =
0.1. We assume the arrivals of this network have token-bucket arrival curve
γr,b and the service curve at each node is rate-latency βi = βRi,Ti

, i =
2, 3, . . . , 10. In this comparison we assume the scaling has i.i.d. Wi’s and

71

3. Stochastic Data Scaling Element - Bounding Functions

for the ease of exposition to be Bernoulli process with parameter p. We nu-
merically further assume r = 4(kp/s), b = 40(kp), [R1, R2, . . . , R10] =
[9, 8.5, 8, 7.5, 7, 6.5, 6, 5.5, 5, 4.5](kp/s),Ti = 0.01(s), i = 1, 2, . . . , 10, and
p = 0.7, where kp/smeans kilo packets per second. Next we list the formular
results and plot them with the numerical settings.

Stochastic Delay Bounds

In Section 3.2 we summarized the alternative analytical results of the sto-
chastic delay bounds. Now we concretize them under given assumptions.
We also use the results of Lemma 1 and 2 and denote ρ = ρS(θ) + δ and
ρ = ρS(−θ) − δ, where ρS(θ) = 1

θ log(1 − p + peθ) for Bernoulli scaling
with parameter p.
a) Ideal:

delayideal = (2n − 1)T +
b

min1≤i≤n {2i−1Ri}
with the stability condition r < min1≤i≤n

{
2i−1Ri

}
.

b) Deterministic:

delaydet = nT +
b

min1≤i≤n{Ri}

with the stability condition r < min1≤i≤n{Ri}.
c) Stochastic node-by-node:

delaystoch.nbn = nT +
b

R1
+

n∑

i=2

(n− 1)ρn−1rT + ρn−1b+ 1−ρn−1

1−ρ σ

Rn

with the stability conditions ρi−1r < Ri, i = 1, 2, . . . , n and violation prob-
ability

∑

1≤i≤n−1 ε.
d) Stochastic end-to-end (ingress vs. egress):

delayingr = nT +
σ

ρR1
+

σ

min
{
ρ2R1, ρR2

} + · · ·

+
σ

min
{
ρn−1R1, ρn−2R2, · · · , ρRn−1

} +
ρn−1b+ 1−ρn−1

1−ρ σ

min1≤i≤n

{
ρn−iRi

}

with the stability condition ρn−1r < min
{
ρn−1R1, · · · , ρRn−1, Rn

}

and violation probability
∑

1≤i≤n−1

ǫi + ǫi .

72

3.4. Application: Delay Bounds under Uncertain Load Balancing

2 4 6 8 10
0

500

1000

1500

Number of nodes

D
e
la

y

Stochastic e2e (ingress)

Stochastic e2e (egress)

Figure 3.12: Comparison of moving the scalers to the ingress and egress.

delayegr = nT +
σ

Rn
+

σ

min
{

Rn−1,
Rn

ρ

} + · · ·

+
σ

min
{

R2,
R3

ρ ,
Rn

ρn−2

} +
b

min1≤i≤n

{
Ri

ρi−1

}

with stability condition r < min

{

R1,
R2

ρ
, · · · , Rn

ρn−1

}

and violation probability
∑

1≤i≤n−1

ǫi .

We do not provide the delay bounds calculated using the concatenated scal-
ing treatment, because the way we scale leads to more complexity of calcu-
lation and gains no great benefit (see [151]). When moving the scalers to the
ingress as well as to the egress, we move the nearer one first, which over-
takes the other order as discussed in Section 3.2. We compare the results in
Figure 3.12, 3.13, and 3.14.

From Figure 3.12, we can see that moving the scalers to the ingress and
to the egress results in dramatically different stochastic delay bounds. Only
for a small number (3) of nodes both results are still comparable, after that,
the delay bounds by moving scalers to the ingress are very pessimistic. The
reason behind that is when we calculate the delay bounds, we simultaneously
use the stochastic maximum and minimum scaling curves, which was con-
cluded to be loose in [64]. As moving the scalers to the ingress is inferior to
moving to the egress, we focus on the latter here.

73

3. Stochastic Data Scaling Element - Bounding Functions

2 4 6 8 10
0

20

40

60

Number of nodes

D
e
la

y

Stochastic e2e (egress)

Stochastic nbn

Figure 3.13: Comparison of node-by-node and end-to-end analyses.

2 4 6 8 10
4

5

6

7

8

9

Number of nodes

D
e
la

y

Stochastic e2e (egress)
Deterministic e2e
Ideal

Figure 3.14: Comparison of ideal, deterministic, and stochastic scalings.

From Figure 3.13, we can see that a node-by-node analysis can only pro-
vide a worse bound. This is discussed in Section 2.2.3. But interestingly these
node-by-node delay bounds are even better than the end-to-end delay bounds
moving the scalers to the ingress.

In Figure 3.14 we compare the end-to-end delay bounds moving the scalers
to the egress with other two alternatives: ideal and deterministic scalings. The
results from Ideal and deterministic scaling models serve as reference values.
We know the “ideal” is only a case to unbiased balance the traffic according
the branches to the next nodes. We still need to adjust the parameter in ideal
case when the capacities of the next nodes are biased. The deterministic result
seems not bad and even better than the node-by-node analysis. But the prob-
lem of it lies in that without considering the scaling effect, stability condition

74

3.4. Application: Delay Bounds under Uncertain Load Balancing

may not be satisfied at the bottleneck node, while in fact the traffic is already
scaled before that node and the stability validation is passed. Therefore, the
deterministic method can only serve as a reference for most cases instead of
a practical calculation.

Remarks on the Choice of the Parameters

While in the previous subsections we showed how to work out different sto-
chastic delay bounds, we suppressed, for the sake of ease of exposition, the
discussion of composing a harmonic parameter choice. In fact, the calcula-
tion of the delay bounds values depends on the way we relate the violation
probability ε of the delay bound to the violation probabilities εi, εi of all the
stochastic scaling curves, the way we relate δ to σ respectively δ to σ, and
even the felicitous choice of the free parameter θ.

We use the Boole’s inequality to derive the violation probability and thus
get the form like ε =

∑

i εi. The first challenge is the assignment of the
value among these “sub” violation probability values. We can systematically
set up a series of weights for each and find an optimal combination. For the
ease of exposition we let them equal. Although this has already resulted in
the feasible values for our illustrative purpose, we should know that a careful
choice of weights may lead to better results. The second challenge is the bal-
ance between σ and ρ, e.g., σ and ρ. A smaller σ relates to a larger ρ. Alert

reader may find that ρ is a function of σ. Under our assumption, ρ = e−θσ

θε .
Consider a simple case whereby a traffic with arrival curve α = γr,b traverses
firstly a scaler then a server with service curve β = βR,T . Fix the violation
probability of the stochastic maximum scaling curve ε, we get an optimal de-
lay bound when σ = 1

θ log
b
ε . But it is difficult to apply this result directly to

a more complicated formula like delayegr shown in the previous subsection.
What we do here is simply numerically searching the better result instead of
analytically. Careful choice of θ can also improve the final result potentially.
An advanced way to get better results is to use different θ at each independent
occasion when we apply the Chernoff bound. In this comparison that means
we can use different θ for each stochastic maximum respectively minimum
scaling curve. All these factors together compose a complex optimization
problem. However, we must point out that, for the tightness of the stochastic
delay bounds, the dominant issue is possibly not the parameter optimization,
but the use of Boole’s inequality. So here we leave the optimization open and
refer the reader to a good discuss of replacing Boole’s inequality with Mar-
tingale inequality [47, 118]. The complete adoption of Martingale is out of
the scope of this thesis, but we still attempt to apply it, at least, for specific

75

3. Stochastic Data Scaling Element - Bounding Functions

scaling model (see Section 6.2.1).

76

Chapter 4

Stochastic Data Scaling

Element - Process

In this chapter we aim to provide a parallel scaling element model for the
flow transformation networks. While this new model could also be seen as
a stochastic extension of the deterministic scaling element, in that we still
strive for convolution-form expressions, we emphasize that we had to depart
significantly from the deterministic one by defining the scaling at the level of
the arrival processes, instead of purely aggregating scaling sample paths and
characterizing the stochastic scaling curves as seen in Chapter 3. If we view
the model using the scaling curves as a black-box modeling, the new one is a
white-box modeling. It is feasible to assume some known knowledge on the
scaling behavior, since we do not want our data control sequence completely
out of control. Towards this goal, this chapter contributes by introducing a
new defined stochastic scaling element, in the framework of the stochastic
network calculus, to model flow transformations in great generality. The new
scaling element is carefully defined to achieve (1) convolution-form network
representations, and (2) a straightforward and flexible means of capturing ac-
tual transformation processes inside a network. The former allows to preserve
the exact scaling properties in network calculus and the latter opens up the
modeling scope widely. More technically speaking, unlike solely observing
the scaling itself, the new stochastic scaling element also involves the flow to
be transformed defines all in the process expression. This expression facili-
tates deriving several useful algebraic properties, of which the most important
is that it can still be commuted with a dynamic server element. In this way,
the end-to-end performance bounds can be computed by first reordering a se-

77

4. Stochastic Data Scaling Element - Process

ries of dynamic server and scaling elements, and then applying concatenation
properties for each type. We have seen this property in Chapter 3, whereas
the new expression supports a finer treatment when modeling the real appli-
cations or deriving the performance bounds. The results presented in this
chapter are from the joint work with F. Ciucu and J. Schmitt [49].

Closely following the structure of the two previous chapters we structure
this chapter as follows. First, in Section 4.1 we introduce the new stochastic
scaling elements with some of their properties. Then we provide the com-
mutation lemma for transforming the system into an analytically equivalent
system and use these elements in Section 4.3 to derive end-to-end delays in a
network with flow transformations. These results are numerically illustrated
in Section 4.4. Differently, in order to show the great modeling generality
of the new stochastic scaling element, we will not provide any application
scenario like the load balancing shown in Chapter 3 here. We leave the appli-
cations as show cases and to inspire the thoughts in the next chapters. Another
point to note is, we use X to denote the scaling element in this chapter, ac-
cordingly S for the service. Unless specified, we keep this denotation pattern
in the rest chapters: if X for the scaling r.v. , then S for the dynamic service,
otherwise S is for the scaling function.

4.1 Stochastic Data Scaling Element

In this section we first newly define the stochastic data scaling element, state
its basic properties, and give an example of a Markov-modulated scaling
process. Then we show the commutativity property of the scaling and dy-
namic server elements, which is instrumental for expressing networks with
flow transformations in convolution-form.

The time model is discrete. Again, an arrival processA(t) is modeled with
non-decreasing and non-negative random processes, taking integer values,
and defined on some joint probability space. We model the transformation
with the following stochastic scaling element definition.

Definition 18. (Stochastic Scaling Element - Scaled Arrivals) A (stochas-
tic) scaling element consists of an arrival process A(t), a scaling process
X = (Xi)i≥1 taking non-negative integer values, and a scaled processAX(t)
defined for all t ≥ 0 as

AX(t) =

A(t)
∑

i=1

Xi . (4.1)

For an illustration see Figure 4.1.

78

4.1. Stochastic Data Scaling Element

AA(t) (t)
X

X

Figure 4.1: A scaling element with arrival process A(t), scaling process X =
(Xi)i≥1, and scaled process AX(t).

Note, we use a different denotation for the scaling element here, i.e. X

instead of S. When Xi ∈ {0, 1} for all i ≥ 1 we say that the scaling pro-
cess X is a loss process, which is useful for modeling losses at a link. In
turn, if Xi > 1 for some i, then the scaling process X is useful for modeling
retransmissions of previous losses or redundant transmissions. For notation
convenience, when X is i.i.d., we generically refer to Xi by X . Also, two
scaling processes X = (Xi)i≥1 and Y = (Yi)i≥1 are i.i.d. if {Xi≥1, Yi≥1}
are (mutually) i.i.d.. And for two r.v.’s X and Y , we denote equality in distri-
bution by X =d Y .

For an arrival process A(t) and a scaling process X = (Xi)i≥1, it is
helpful to define the corresponding scaled process in bivariate form as:

AX(s, t) := AX(t)−AX(s) =

A(t)
∑

i=A(s)+1

Xi . (4.2)

Note that in general AX(s, t) 6= (A(s, t))X, but they are equal in distribution
under appropriate stationarity assumption on X and independence between
A(t) and X.

We remark that the scaled process AX(t) from Eq. (4.1) is defined by
space scaling at the granularity of data units, i.e., packets. A coarser scaling
may be defined by scaling at the granularity of time units. Concretely, for a
scaling process Y = (Ys)s≥1, the probabilistic scaled process of A(t) is the

process AY(t) defined as

AY(t) =

t∑

s=1

a(s)Ys , (4.3)

for all t ≥ 1, where a(s) = A(s) − A(s − 1) is the instantaneous arrival
process of A(t). This is actually a variant of Eq. (3.3) at the level of arrival
process.

The space and time scaling models are tightly related in the following

79

4. Stochastic Data Scaling Element - Process

way.

Lemma 3. (Scaling Granularities) See the following two scaling models

(a) AX(t) =

A(t)
∑

i=1

Xi (b) AY(t) =

t∑

s=1

a(s)Ys .

Assume A(0) = 0. We have, (1) given (a), one can define for all s ≥ 1

the process Ys =
∑A(s)

i=A(s−1)+1
Xi

a(s) such that AY(t) = AX(t); (2) conversely

given (b), one can define for all i ≥ 1 the process Xi = Ymin{s:i≤A(s)} such

that AX(t) = AY(t).

Proof. We prove (1) and (2) respectively. First (1),

AY(t) =

t∑

s=1

a(s)Ys

=

t∑

s=1

a(s)

∑A(s)
i=A(s−1)+1Xi

a(s)

=
t∑

s=1

A(s)
∑

i=A(s−1)+1

Xi

=

A(1)
∑

i=A(0)+1

Xi +

A(2)
∑

i=A(1)+1

Xi + · · ·+
A(t)
∑

i=A(t−1)+1

Xi

=

A(t)
∑

i=A(0)+1

Xi

=

A(t)
∑

i=1

Xi

= AX(t) .

Then (2),

AX(t) =

A(t)
∑

i=1

Xi

80

4.1. Stochastic Data Scaling Element

=

A(t)
∑

i=1

Ymin{s:i≤A(s)}

=

A(1)
∑

i=1

Ymin{s:i≤A(s)} +

A(2)
∑

i=A(1)+1

Ymin{s:i≤A(s)} + · · ·

+

A(t)
∑

i=A(t−1)+1

Ymin{s:i≤A(s)}

=

A(1)
∑

i=1

Y1 +

A(2)
∑

i=A(1)+1

Y2 + · · ·+
A(t)
∑

i=A(t−1)+1

Yt

= a(1)Y1 + a(2)Y2 + · · ·+ a(t)Yt

=

t∑

s=1

a(s)Ys

= AY(t) .

For part (1), in the fourth line, we expand the outer sum. In the sixth line we
use the assumption that A(0) = 0. For part (2), in the third line we seperate
the sum into segments, in each segment we can decide min{s : i ≤ A(s)}.
In the fifth line we use the definition of a(t).

The rest of this chapter considers the space scaling model only.
The next lemma states some basic properties of the scaling elements which

are useful in analyzing networks with flow transformations.

Lemma 4. (Properties of Scaling Elements) For an arrival process A(t) and

an independent and stationary scaling process X = (Xi)i≥1 the following

basic properties hold.

1. (Scaling Additivity) If Y = (Yi)i≥1 is a scaling process then

AX+Y = AX +AY ,

as illustrated in Figure 4.2.

2. (Arrival Additivity) IfB(t) is an arrival process andXi’s are i.i.d. then

(A+B)X =d A
X +BY ,

81

4. Stochastic Data Scaling Element - Process

X+Y
X+Y A +AX

AX

AY

<==>

A

A

A A Y

X

Y

1

Figure 4.2: Scaling with a sum. The identity scaling element 1 = (1, 1, . . .)
plays the role of a multiplexer.

as illustrated in Figure 4.3, where Y = (Yi)i≥1 is a scaling process

equal in distribution with X and also independent of X.

AX
AX

YB

+B

A

B

<==>

A

B

(A+B)
X

X

Y

1
YX

Figure 4.3: Scaling of a sum; X and Y are i.i.d. .

3. (Stationarity) If both A(t) and X are stationary and independent then

the scaled process AX(t) is stationary, i.e., for all s, t ≥ 0

AX(s, s+ t) =d A
X(t) . (4.4)

However, if B(s) is an additional arrival process, not necessarily inde-

pendent of A(t), and X is independent of (A(t), B(s)), then we have

the following bound for s, t ≥ 0 and x ≥ 0

Pr
(
AX(t)−BX(s) ≥ x

)
≤ Pr

(

(A(t) −B(s))
X ≥ x

)

. (4.5)

4. (Concatenation and Commutativity) IfX is a loss process, Y = (Yi)i≥1

is a scaling process independent of X, and Xi’s, Yi’s are i.i.d. then

(
AX
)Y

=d A
XY ,

where XY is the scalar product, as illustrated in Figure 4.4.

82

4.1. Stochastic Data Scaling Element

<==>
A A A

XYYX
X (A)X AXYY

Figure 4.4: Concatenation; X is a loss process and X and Y are i.i.d. .

If Y is also a loss process then we have the commutativity property

(
AX
)Y

=d

(
AY
)X

.

5. (Absorbing Zero and Identity Elements) If 0 = (0, 0, . . .) and 1 =
(1, 1, . . .) then

A0 = 0, A1 = A.

We point out that the properties of concatenation and commutativity re-
quire the strong condition that the processes are i.i.d.; as it will be evident
from the proof, this condition cannot be relaxed to the stationarity of the pro-
cesses.

Proof. The two additivity properties and the absorbing zero and identity ele-
ments’ properties follow directly from the definition of the scaled process.

(1)

AX+Y =

A(t)
∑

i=1

(X+Y)i =

A(t)
∑

i=1

(Xi + Yi) =

A(t)
∑

i=1

Xi +

A(t)
∑

i=1

Yi = AX +AY.

The key point here is to define the “sum” random process.
(2)
We check the probabilities of both sides.

Pr





A(t)+B(t)
∑

i=1

Xi ≤ x





=
∑

B

∑

A

Pr

(
A+B∑

i=1

Xi ≤ x

)

Pr(B(t) = B | A(t) = A)Pr(A(t) = A)

=
∑

B

∑

A

Pr

(
A∑

i=1

Xi +

A+B∑

i=A+1

Xi ≤ x

)

Pr(A(t) = A,B(t) = B)

83

4. Stochastic Data Scaling Element - Process

=
∑

B

∑

A

(
∑

xA

Pr

(

xA +

A+B∑

i=A+1

Xi ≤ x |
A∑

i=1

Xi = xA

)

·

Pr

(
A∑

i=1

Xi = xA

))

· Pr(A(t) = A,B(t) = B)

=
∑

B

∑

A

(
∑

xA

Pr

(

xA +

A+B∑

i=A+1

Xi ≤ x

)

Pr

(
A∑

i=1

Xi = xA

))

·Pr(A(t) = A,B(t) = B)

=
∑

B

∑

A

(
∑

xA

Pr

(

xA +

B∑

i=1

Yi ≤ x

)

Pr

(
A∑

i=1

Xi = xA

))

·Pr(A(t) = A,B(t) = B)

=
∑

B

∑

A

Pr

(
A∑

i=1

Xi +

B∑

i=1

Yi ≤ x

)

Pr(A(t) = A,B(t) = B)

=Pr
(
AX(t) +BY(t) ≤ x

)
.

Hence, (A+B)
X
=d A

X+BY. Note, because
∑A

i=1Xi may be dependent

of
∑B

i=1Xi, if we replace
∑A+B

i=A+1Xi with
∑B

i=1Xi, we cannot add/remove
the condition part of the probability. That’s why we introduce Yi’s.

(3) (a) The proof is similar to the proof of arrival additivity.

Pr
(
AX(s, s+ t) ≤ x

)

= Pr





A(s+t)
∑

i=A(s)+1

Xi ≤ x





=
∑

As

∑

Ast

Pr

(
Ast∑

i=As+1

Xi ≤ x

)

Pr(A(s) = As, A(s+ t) = Ast)

=
∑

As

∑

Ast

Pr

(
Ast−As∑

i=1

Xi ≤ x

)

Pr(A(s) = As, A(s+ t) = Ast)

=
∑

As

∑

Ast

Pr

(
Ast−As∑

i=1

Xi ≤ x

)

Pr(A(0) = As, A(t) = Ast)

84

4.1. Stochastic Data Scaling Element

= Pr





A(t)−A(0)
∑

i=1

Xi ≤ x





= Pr





A(t)
∑

i=1

Xi ≤ x



 .

In the third line we use the independence of X and A(t). In the fourth and
fifth lines we respectively use the stationarity of X and A(t). In the last line
we use the assumption that A(0) = 0.

(b)

Pr
(
AX(t)−BX(s) ≥ x

)

=Pr





A(t)
∑

i=1

Xi −
B(s)
∑

i=1

Xi ≥ x





=Pr





A(t)
∑

i=B(s)+1

Xi ≥ x,A(t) > B(s)



 +

Pr





A(t)
∑

i=B(s)+1

Xi ≥ x,A(t) ≤ B(s)





=
∑

B

∑

A

Pr

(
A∑

i=B+1

Xi ≥ x,A > B

)

Pr(B(s) = B,A(t) = A)

=
∑

B

∑

A

Pr

(
A−B∑

i=1

Xi ≥ x,A > B

)

Pr(B(s) = B,A(t) = A)

=Pr





A(t)−B(s)
∑

i=1

Xi ≥ x,A(t) > B(s)





≤Pr





A(t)−B(s)
∑

i=1

Xi ≥ x



 .

In the third line we use the total probability. In the fourth and fifth line we
respectively use conditioning on B(s) and A(t). In the fourth line we use
the independence of X and arrivals. In the fifth line, the stationarity of X is
used. The equality in Eq. (4.5) appears in the case of x = 0. Using the same

85

4. Stochastic Data Scaling Element - Process

argument, one may prove a generalized statement that for x ≥ 0

Pr
(
(AX(t)−BX(s)− C)Y ≥ x

)
≤ Pr

((
(A(t) −B(s))X − C

)Y ≥ x
)

,

(4.6)
where C and Y are additional r.v. / scaling process, stationary and indepen-
dent of the rest. Critical for the proof is the positivity of X and Y.

(4) (a)

Pr
((
AX
)Y

(t) ≤ z
)

= Pr






∑A(t)
j=1 Xj
∑

i=1

Yi ≤ z






=
∑

A

Pr





∑A
j=1 Xj
∑

i=1

Yi ≤ z | A(t) = A



Pr(A(t) = A)

=
∑

A

Pr

(
X1+X2+···+XA∑

i=1

Yi ≤ z

)

Pr(A(t) = A)

=
∑

A

∑

x1

Pr

(
x1+X2+···+XA∑

i=1

Yi ≤ z | X1 = x1

)

·Pr(A(t) = A | X1 = x1)Pr(X1 = x1)

=
∑

A

∑

x1

Pr

(
x1+X2+···+XA∑

i=1

Yi ≤ z

)

Pr(X1 = x1)Pr(A(t) = A)

=
∑

A

∑

x1

∑

x2

· · ·
∑

xA

P

(
x1+x2+···+xA∑

i=1

Yi ≤ z

)

Pr(X1 = x1) · · ·Pr(XA = xA)Pr(A(t) = A) .

In the third line we condition the probability on A(t). In the fourth line we
use the independence of scaling and arrival process. The fifth line uses con-
ditioning on X1. In the sixth line we use the independence of Xi’s and Yi’s.
Now it is sufficient to prove

∑x1+x2+···+xA

i=1 Yi =d

∑A
i=1 xiYi. Because X

is a loss process, xi ∈ 0, 1. Let xj1 = xj2 = · · · = xjn = 1, other xi’s be 0,
where 1 ≤ j1 < j2 · · · < jn ≤ A and 1 ≤ n ≤ A. We have

Y1 + Y2 + · · ·+ Yx1+x2+···+xA

86

4.1. Stochastic Data Scaling Element

= Y1 + Y2 + · · ·+ Yxj1+xj2+···+xjn

= Yj1 + Yj2 + · · ·+ Yjn

= xj1Yj1 + xj2Yj2 + · · ·+ xjnYjn

= x1Y1 + x2Y2 + · · ·+ xAYA .

We get the third line because Yi’s are i.i.d. . We get the fifth line because
other xi’s are 0. Continuing with the former proof, we have

Pr
((
AX
)Y

(t) ≤ z
)

=
∑

A

∑

x1

∑

x2

· · ·
∑

xA

P

(
A∑

i=1

xiYi ≤ z

)

Pr(X1 = x1) · · ·

Pr(XA = xA) · Pr(A(t) = A)

= Pr





A(t)
∑

i=1

XiYi ≤ z





= Pr
(
AXY(t) ≤ z

)
.

Finally, we have
(
AX
)Y

=d A
XY .

(b)

If Y is also a loss process, we have
(
AY
)X

=d A
YX. Because AXY =

∑A(t)
i=1 XiYi =

∑A(t)
i=1 YiXi = AYX, we get

(
AX
)Y

=d

(
AY
)X

.
(5)

A0(t) =

A(t)
∑

i=1

0i =

A(t)
∑

i=1

0 = 0

A1(t) =

A(t)
∑

i=1

1i =

A(t)
∑

i=1

1 = A(t) .

Note, these are just two cases of “constant process”. Using constant K to
define K = (K,K, · · ·), AK(t) = K ·A(t) will be a generalization.

4.1.1 Example: Markov-Modulated Scaling Processes (MMSP)

We define a scaling process X = (Xi)i≥1 as being modulated by a discrete
and homogeneous Markov process S(i) with states 1, 2, . . . ,M and transi-
tion probabilities λi,j for all 1 ≤ i, j ≤ M , as in Figure 4.5. Let also the

87

4. Stochastic Data Scaling Element - Process

i.i.d. random processes Li(n)n≥1 for all 1 ≤ i ≤M . The scaling process is

Xi = LS(i)(i) ,

i.e., the scaling follows the distribution of LS(i)(1) while in state S(i). In the
special case when the Markov chain has a single state, i.e., M = 1, or even
two states with λ1,2 + λ2,1 = 1, the entire scaling process X = (Xi)i≥1 is
i.i.d..

λj,i

... ...

(n)Li ML (n)(n)L1

i

λi,j
j

(n)Lj

1 M

Figure 4.5: A Markov chain S(i) with M states and transition probabilities
λi,j , modulating the scaling process X as Xi = LS(i)(i).

A loss process can be fitted from the classical two-state Gilbert-Elliott
loss model [67, 58] or the finite-state Markov channel for modeling Rayleigh
fading [152]. Further, by inversing these models and adding a time offset, one
may consequently determine a retransmission scaling process.

In order to carry out a calculus with the dynamic scaling expression it is
useful to compute the MGF bounds of the scaled processes in terms of the
MGFs of the arrival processes.

Lemma 5. (Moment Generating Function of a Scaled Process) Let an arrival

process A(t) and an MMSP X = (Xi)i≥1 be defined as above. Then we have

the MGFs for some θ > 0:

1. (General case) If the matrix λ = (λi,j)i,j is irreducible and aperiodic

then

MAX(t)(θ) ≤MA(t) (log sp (φ(θ)λ)) , (4.7)

where φ(θ) := diag
(
ML1(1)(θ), . . . ,MLM(1)(θ)

)
and sp (φ(θ)λ) de-

notes the spectral radius of φ(θ)λ.

2. (I.i.d. case) If Xi’s are i.i.d. then

MAX(t)(θ) =MA(t) (logMX(θ)) . (4.8)

The proof follows using conditioning.

88

4.1. Stochastic Data Scaling Element

Proof. 1. (General case)

MAX(t)(θ) = E
[

eθA
X(t)
]

= E
[

eθ
∑A(t)

k=1 Xk

]

= E
[

E
[

eθ
∑A(t)

k=1 Xk | A(t)
]]

=
∑

A

E
[

E
[

eθ
∑A

k=1 Xk | A(t) = A
]]

Pr(A(t) = A)

=
∑

A

E
[

E
[

eθ
∑A

k=1 Xk

]]

Pr(A(t) = A)

=
∑

A

E
[

E
[

eθ
∑A

k=1 LS(k)(k)
]]

Pr(A(t) = A) .

In the second and the third line we use conditional expectation. We get the
fourth line because A(t) and X are independent. Now we condition on the
starting state of Markov process S(1)

E
[

eθ
∑A

k=1 LS(k)(k) | S(1) = i
]

= E
[

eθLS(1)(1) · eθ
∑A

k=2 LS(k)(k) | S(1) = i
]

= E
[

eθLS(1)(1) | S(1) = i
]

E
[

eθ
∑A

k=2 LS(k)(k) | S(1) = i
]

= φi(θ)

M∑

j=1

E
[

eθ
∑A

k=2 LS(k)(k) | S(2) = j, S(1) = i
]

·

Pr(S(2) = j | S(1) = i)

= φi(θ)

M∑

j=1

E
[

eθ
∑A

k=2 LS(k)(k) | S(2) = j
]

λi,j .

Note, in the third line, because
{
LS(k)(k), k > 1

}
doesn’t contain LS(1)(1),

they are independent. Now we first prove E[f(X2)g(X3) | X2 = j] =
E[f(X1)g(X2) | X1 = j], whereX1, X2, X3, · · · are stationary. Let h(X) =
f(j)g(X), we get

E[f(X2)g(X3) | X2 = j]

= E[h(X3) | X2 = j]

=
∑

x3

h(x3)Pr{X3 = x3 | X2 = j}

89

4. Stochastic Data Scaling Element - Process

=
∑

x3

h(x3)Pr{X2 = x3 | X1 = j}

= E[h(X2) | X1 = j]

= E[f(j)g(X2) | X1 = j]

= E[f(X1)g(X2) | X1 = j] .

In the third line we use the stationarity of X sequence. For the general
case in our following equation, the proof will be an immediate extention.
Note, because S(i)’s are stationary, (LS(k)(k))’s are stationary, i.e., Xi’s

are stationary. That means
∑A+B

i=A LS(k)(k) has the same distribution with
∑B

i=1 LS(k)(k), where A,B > 0. So we have following equations

φi(θ)
M∑

j=1

E
[

eθ
∑A

k=2 LS(k)(k) | S(2) = j
]

λi,j

= φi(θ)

M∑

j=1

E
[

eθ
∑A−1

k=1 LS(k)(k) | S(1) = j
]

λi,j .

Define

ψ(θ, A) =
(

E
[

eθ
∑A

k=1 Xk | S(1) = 1
]

, · · · , E
[

eθ
∑A

k=1 Xk | S(1) =M
])

.

Thenψ(θ, A) = φ(θ)λψ(θ, A−1)T with initial conditionψ(θ, 1)T = φ(θ)1T ,

because for A = 0, E
[

eθ
∑0

k=1Xk | S(1) = j
]

= E[1 | S(1) = j] = 1 and

λ = I .

Next step, we have

ψ(θ, A)T = φ(θ)λψ(θ, A − 1)T

= φ(θ)λ
(
φ(θ)λψ(θ, A − 2)T

)

= (φ(θ)λ)2ψ(θ, A− 2)T

· · ·
= (φ(θ)λ)A−1φ(θ)1T .

Let π = (π1, π2, · · · , πM) be the vector of probabilities of S(1) being at state
i = {1, 2, · · · ,M}. Then we use total probability and get

E
[

eθ
∑A

k=1 Xk

]

= πψ(θ, A)T = π(φ(θ)λ)A−1φ(θ)1T .

90

4.1. Stochastic Data Scaling Element

So far we get

MAX(t)(θ) =
∑

A

E
[

eθ
∑A

k=1 Xk

]

Pr(A(t) = A)

=
∑

A

(
π(φ(θ)λ)A−1φ(θ)1T

)
Pr(A(t) = A) .

And because λ is primitive (λ is irreducible and aperiodic, see e.g., Corol-
lary 5.6.13 of [75]), we have

lim
A→∞

[φ(θ)λ/sp(φ(θ)λ)]A ≤ C,where C is a constant matrix.

Then we have the following limitation

lim
A→∞

1

θA
logE

[

eθ
∑A

k=1 Xk

]

= lim
A→∞

1

θA
log
(
π(φ(θ)λ)A−1φ(θ)1T

)

= lim
A→∞

1

θA
log

(

π [sp(φ(θ)λ)]A−1

[
φ(θ)λ

sp(φ(θ)λ)

]A−1

φ(θ)1T

)

≤ lim
A→∞

1

θA
log [sp(φ(θ)λ)]A−1

+ lim
A→∞

1

θA
log
[
πC(θ)φ(θ)1T

]

=
1

θ
log sp(φ(θ)λ) + 0

=
1

θ
log sp(φ(θ)λ) .

Because we assume A(t) to be stationary, and we know Xk’s are stationary,

from lemma 1 (stationarity of scaled process), we know that
∑A(t)

k=1 Xk are

stationary. Thus the θ-MER of
∑A(t)

k=1 Xk can be presented as below

lim sup
A→∞

1

θA
logE

[

eθ
∑A

k=1 Xk

]

=
1

θ
log sp(φ(θ)λ) .

Note, here A is like the index “t“ in the original definition of θ-MER (p.241
of [36]). Hence, we get

E
[

eθ
∑A(t)

k=1
Xk

]

≤ E
[

eθ((
1
θ
) log sp(φ(θ)λ))A(t)

]

.

91

4. Stochastic Data Scaling Element - Process

That is
MAX(t)(θ) ≤MA(t)(log sp(φ(θ)λ)) .

2. (I.i.d. case)

MAX(t)(θ) = E
[

eθ
∑A(t)

i=1 Xi

]

=
∑

A

E
[

eθ
∑A

i=1 Xi | A(t) = A
]

Pr(A(t) = A)

=
∑

A

E
[

eθ
∑A

i=1 Xi

]

Pr(A(t) = A)

=
∑

A

E
[
eθX1eθX2 · · · eθXA

]
Pr(A(t) = A)

=
∑

A

(
E
[
eθX1

])A
Pr(A(t) = A)

=
∑

A

E
[(
E
[
eθX

])A
]

Pr(A(t) = A)

= E
[(
E
[
eθX

])A(t)
]

= MA(t)(logMX(θ)) .

From the first line to the second line we use the conditional expectation. In
the third line, we use the independence of A(t) and X. We get the fifth line
because Xi’s are i.i.d. .

The above lemma can be applied recursively to derive the MGF bound of
a scaled process through a series of scaling elements. For instance, if X and
Y are i.i.d. then

M(AX)Y(t)(θ) = MAX(t) (logMY (θ))

= MA(t) (logMX (logMY (θ))) .

If X is additionally a loss process, then the last line further equals to MA(t)

(logMXY (θ)), by applying the concatenation property from Lemma 4.

4.2 Commutation

Here we show how to commute a series of a dynamic server element and
a scaling element. As mentioned earlier, this property is instrumental for

92

4.2. Commutation

expressing networks with flow transformations in convolution-form. Before
that we briefly depict the dynamic server element in Figure 4.6.

Figure 4.6: A dynamic server element with arrival process A(t), service pro-
cess S(s, t), and departure process D(t).

Lemma 6. (Commuting Dynamic Server and Scaling Elements) Consider a

system with an arrival process A(t) which goes through a dynamic server

S(s, t) and then a scaling element X = (Xi)i≥1. In another system, A(t)
goes first through X and then through the exact dynamic server T (s, t) :=
∑A(s)+S(s,t)

i=A(s)+1 Xi, as shown in Figure 4.7. If A(t), X, and S(s, t) are inde-

Figure 4.7: Commuting dynamic server and scaling elements

pendent, then for all t ≥ 0

E(t) ≤ DX(t) , (4.9)

whereDX(t) andE(t) are the departure processes in the two systems. More-

over, if A, S and X are independent, and X is stationary, then for any θ > 0
we have MT (s,t)(−θ) =MS(s,t)(logMX(−θ)).

Proof. From the definition of the scaling and service elements we have im-
mediately for some t ≥ 0

E(t) = inf
0≤s≤t

{
AX(s) + T (s, t)

}

= inf
0≤s≤t







A(s)
∑

i=1

Xi +

A(s)+S(s,t)
∑

i=A(s)+1

Xi







= inf
0≤s≤t

A(s)+S(s,t)
∑

i=1

Xi ≤
D(t)
∑

i=1

Xi = DX(t) .

93

4. Stochastic Data Scaling Element - Process

The rest of proof follows by successive conditioning.

The lemma ensures that backlog/delay processes in the transformed sys-
tem are bigger in distribution than in the original system. We also point
out that although the expression of T (s, t) depends on A(s), the expression
of T (s, t)’s Laplace transform is sufficient to elegantly carry out end-to-end
computations. The next section presents a detailed end-to-end delay analysis
of a network with flow transformations by means of Lemma 6.

4.3 End-to-End Delay Bounds

In this section we compute end-to-end delays in a flow transformation net-
work consisting of a series of alternate scaling and service elements. In par-
ticular we demonstrate that by using Lemma 6, which allows the transforma-
tion of this network in a convolution-form network by repeatedly commut-
ing scaling and service elements, the end-to-end delays scale linearly in the
number of service elements. In contrast, we also show that by applying the
alternative node-by-node and additive analysis with the new defined scaling
element, end-to-end delays scale quadratically.

...

Figure 4.8: A flow transformation network consisting of sequence of alternat-
ing service and scaling elements.

We consider the flow transformation network scenario from Figure 4.8. A
stationary arrival processA(t) crosses a series of alternate service and scaling
elements denoted by Si and Xi, respectively. We assume that all the service
and scaling processes are stationary and (mutually) independent. This net-
work scenario can be seen as a flow’s view, or a part of it, in a network with
loss, random routing, transcoding, or more generally, certain agile data oper-
ation.

4.3.1 Transformation in Convolution-Form

The next theorem provides a bound on the end-to-end delay and the corre-
sponding order of growth for the network shown in Figure 4.8.

Theorem 9. (End-to-End Delays in a flow transformation network) Consider

the network scenario from Figure 4.8 where a stationary arrival process A(t)

94

4.3. End-to-End Delay Bounds

crosses a series of alternate stationary and (mutually) independent service

and scaling elements denoted byS1, S2, . . . , Sn and i.i.d.X1,X2, . . . ,Xn−1,

respectively. Assume that the MGF bounds on the arrivals and services are

MA(s,t)(θ) ≤ eθr(θ)(t−s) and MSk(t)(−θ) ≤ e−θCkt, for k = 1, . . . , n, and

some θ > 0. Under a stability condition, to be explicitly given in the proof,

we have the following end-to-end steady-state delay bounds for all d ≥ 0

Pr
(

W > d
)

≤ Knbd , (4.10)

where the constants K and b are to be given in the proof as well. Moreover,

the ε-quantiles scale as O(n), for some ε > 0.

Proof. Fix t, d ≥ 0 and denote for convenience for all k, s ≥ 0

A(k)(s) :=



· · ·
(
AX1

)X
. .

.

2





Xk

(s) (4.11)

the iterative scaling ofA by X1, X2, . . . , Xk. Also, for k ≥ 0 we introduce
the scaled processes Uk(s, uk) defined as

U0(s, u0) = A(s) ,

for u0 = s, and then recursively

Uk(s, uk) =
(

Uk−1(s, uk−1) + Sk(uk−1, uk)
)Xk

(4.12)

for k ≥ 1 and uk−1 ≤ uk.
We are going to prove the claim from the theorem by induction. For k ≥ 1

we let the following two statements (S1) and (S2) for the induction process:

(S1) Pr
(

Wk(t) > d
)

≤
∑

0≤s≤t−d

∑

s≤u1≤···≤uk−1≤t

Pr
(

A(k−1)(t− d) > Uk−1 (s, uk−1) + Sk (uk−1, t)
)

,

and for fixed s and uk

(S2)
(

A(k−1)(s) + Tk−1 ⊗ Sk(s, uk)
)Xk

= inf
s≤u1≤···≤uk

Uk (s, uk) ,

95

4. Stochastic Data Scaling Element - Process

where Tk is defined recursively as T0(0) = 0, T0(s) = ∞ for all s > 0, and

Tk(s, t) :=

A(k−1)(s)+Tk−1⊗Sk(s,t)∑

i=A(k−1)(s)+1

Xk,i . (4.13)

For the initial step of the induction, i.e., k = 1, we have

Pr
(

W1(t) > d
)

= Pr (A(t− d) > D(t))

≤ Pr (A(t− d) > A⊗ S1(t))

≤
∑

0≤s≤t−d

Pr (A(t− d) > U0 (s, s) + S1(s, t)) , (4.14)

which verifies the first statement (S1). In the first line D(t) is the output
process from the service element S1 and we used the equivalence W1(t) >
0 ⇔ A(t − d) > D(t), in the second line we used the definition of the
dynamic server, and in the third line we expanded the (min,+) convolution
and applied the union bound.

In turn, for the second statement (S2), we have

(A(s) + T0 ⊗ S1(s, u1))
X1 = (A(s) + S1 (s, u1))

X1

= inf
s≤u1

U1 (s, u1) ,

which verifies (S2). In the first line we used that T0(0) = 0, T0(s) = ∞ for
s > 0, and then we used the definition of Uk(s, uk) from Eq. (4.12).

For the inductive step we assume that (S1) and (S2) hold for some k ≥ 1
and we will prove them for k + 1.

First, we observe that after iteratively commuting for k times the service
and service elements from Figure 4.8, we obtain the system from Figure 4.9;
note that, according to Lemma 6, the output before the kth service element in
the transformed system is smaller than in the original system.

... ...

Figure 4.9: Transformation of the system from Figure 4.8 after iteratively
applying Lemma 6 for k times.

Using the argument from Eq. (4.14) we can write for the end-to-end delay

96

4.3. End-to-End Delay Bounds

until the k + 1th scaling element

Pr (Wk+1(t) > d)

≤
∑

0≤s≤t−d

Pr
(

A(k)(t− d) > A(k)(s) + Tk ⊗ Sk+1(s, t)
)

≤
∑

0≤s≤t−d

∑

s≤uk≤t

Pr
(

A(k)(t− d) >

A(k)(s) + Tk(s, uk) + Sk+1(uk, t)
)

≤
∑

0≤s≤t−d

∑

s≤uk≤t

Pr
(

A(k)(t− d) >

(

A(k−1)(s) + Tk−1 ⊗ Sk(s, uk)
)Xk

+ Sk+1(uk, t)
)

≤
∑

0≤s≤t−d

∑

s≤u1≤···≤uk≤t

Pr

(

A(k)(t− d) >

Uk(s, uk) + Sk+1(uk, t)

)

,

which proves statement (S1) for k + 1. In the third line we expanded the
convolution and applied the union bound, and finally we used the induction
hypothesis for (S2) together with the union bound.

Lastly, for the induction argument, we need to prove the statement (S2)
for k + 1. We have

(

A(k)(s) + Tk ⊗ Sk+1(s, uk+1)
)Xk+1

= inf
s≤uk≤uk+1

(

A(k)(s) + Tk(s, uk) + Sk+1(uk, uk+1)
)Xk+1

= inf
s≤uk≤uk+1

(
(

A(k−1)(s) + Tk−1 ⊗ Sk(s, uk)
)Xk

+Sk+1(uk, uk+1)

)Xk+1

= inf
s≤uk≤uk+1

(Uk(s, uk) + Sk+1(uk, uk+1))
Xk+1

= inf
s≤uk≤uk+1

Uk+1(s, uk+1) ,

97

4. Stochastic Data Scaling Element - Process

which proves the claim. In the next to last line we used the induction hy-
pothesis and then the definition of Uk(s, uk) from Eq. (4.12). The induction
argument is thus complete.

Next we compute the end-to-end delay bound onWn(t) by using the state-
ment (S1) for k = n. We have

Pr
(

Wn(t) > d
)

≤
∑

0≤s≤t−d

∑

s≤u1≤···≤un−1≤t

Pr

(

A(n−1)(t− d)

>

(

. . .
(

(A(s) + S1(s, u1))
X1 + S2(u1, u2)

)X2

+ · · ·+ Sn−1(un−2, un−1)

)Xn−1

+ Sn(un−1, t)

)

≤
∑

0≤s≤t−d

∑

s≤u1≤···≤un−1≤t

Pr

((

. . .
(

(A(t− d− s)− S1(s, u1))
X1 − S2(u1, u2)

)X2

− · · · − Sn−1(un−2, un−1)

)Xn−1

> Sn(un−1, t)

)

,

after repeatedly applying the stationary bounds in Eqs. (4.5) and (4.6) from
Lemma 4. Next, using the Chernoff bound for some θ > 0, we obtain

Pr
(

Wn(t) > d
)

≤
∑

0≤s≤t−d

∑

s≤u1≤···≤un−1≤t

ean−1r(an−1)(t−d−s)

e−an−1C1(u1−s)e−an−2C2(u2−u1) · · · e−a0Cn(t−un−1) .

Here we recursively used Lemma 5 and obtained the bounds

E
[

eθA
(k)(t)

]

≤ eakr(ak)t , (4.15)

for k ≥ 0 (refer to Eq. (4.11) for the definition of A(k)(t)). Note that a0 = θ
and ak’s for k ≥ 1 do not depend on A(t) but instead are formed iteratively
as

ak = logMX1 (logMX2 (· · · (logMXk
(θ)) · · ·)) (4.16)

in the case when X1,i’s are i.i.d.. More generally, when Xk’s are MMSPs,

98

4.3. End-to-End Delay Bounds

the recursion is given by

ak = log sp (φX1 (log sp (φX2 (· · · log sp (φXk
(θ)λk) · · ·)λ2))λ1) (4.17)

by Lemma 5, where the diagonal matrices φXk+1
(ak) are defined as φ(θ)

from Lemma 5, but now relative to each Xk+1 for k ≥ 0.

Denoting
b = sup

k=0,...,n−1
e−akCn−k (4.18)

we can bound the sums as

Pr
(

Wn(t) > d
)

≤
∑

0≤s≤t−d

∑

s≤u1≤···≤un−1≤t

ean−1r(an−1)(t−d−s)bt−s

= bd
∑

0≤s≤t−d

(
t− s+ n− 1

n− 1

)

e(log b+an−1r(an−1))(t−d−s) .

where
(
t−s+n−1

n−1

)
means “pick t − s + 1 things into n − 1 slots". Let q =

elog b+ar(a) and impose the following stability condition

an−1r(an−1) + log b < 0 , (4.19)

i.e., q ∈ (0, 1). Let p = 1− q, we can further reformulate the bound as

Pr(Wn(t) > d)

≤ bd
1

pn

∑

0≤s<t−d

(
t− s+ n− 1

n− 1

)

pnqt−d−s

= bd
1

pn
1

qd

∑

0≤s<t−d

(
t− s+ n− 1

n− 1

)

pnqt−s let t→ ∞

≤ bd
1

pn
1

qd

∞∑

t−s>d

(
t− s+ n− 1

n− 1

)

pnqt−s .

The sum part of the last line has the form of negative binomial distribution.
We can interprete it into the sum of geometric r.v.’s. That is X =

∑n
i=1Xi.

X represents the number of trials needed to obtain n successes. Xi is the
number of trials needed to obtain i-th success. Xi’s are independent. So

MX(θ′) = (MXi
(θ′))

n
=
(

peθ
′

1−qeθ′

)n

. And now the sum can be transformed,

99

4. Stochastic Data Scaling Element - Process

through using Chernoff bound, as below

Pr(Wn(t) > d)

≤ bd
1

pn
1

qd
Pr(X ≥ n+ d)

chernoff bound ≤ bd
1

pn
1

qd
inf

θ′∈[0,∞)

{

e−θ′(n+d)MX(θ′)
}

.

In order to get the infimum we differentiate θ′. The point exists when

eθ
′

=
d

q(n+ d)
(4.20)

and note θ′ ≥ 0, it implies d ≥ nq
1−q . Therefore we get the delay bound

Pr(Wn(t) > d)

≤ bd
1

pn
1

qd

(
q(n+ d)

d

)n+d
(

p d
q(n+d)

1− q d
q(n+d)

)n

= bd
(
n+ d

n

)n(
n+ d

d

)d

= bd

(

(1 + d/n)
1+d/n

(d/n)d/n

)n

→ Knbd .

We note that using the stability condition from Eq. (4.19) and taking t →
∞ proves the result from Eq. (4.10). Finally, the order of growth of the ε-
quantiles for some 0 < ε < 1 follow directly from Eq. (4.10) by observing
that K is bounded in n. The proof is now complete.

4.3.2 Alternative Node-by-Node Analysis

Here we show that end-to-end delays obtained by a straightforward node-by-
node analysis fundamentally differ from those obtained in Theorem 9 in that
the order of growth is quadratic in number of nodes, as opposed to linear.

Consider the notations from Figure 4.10, where Ak represents the output
from the kth service element, for k = 1, . . . , n. Also, denote by convention
A0 = A and let X0 = 1.

Assume as in Theorem 9 thatMA(s,t)(θ) ≤ eθr(θ)(t−s) andMSk(t)(−θ) ≤
e−θCkt, for k = 1, . . . , n, and some θ > 0. Assume also the stability con-

100

4.3. End-to-End Delay Bounds

...

Figure 4.10: A flow transformation network consisting of sequence of alter-
nating service and scaling elements.

dition ak−i+1Ci > akr(ak) for all 1 ≤ i ≤ k, where ak’s are defined as in
Eq. (4.16) or (4.17).

We will first prove by induction the statement

(S) E
[

eθA
Xk
k

(t)
]

≤Mke
akr(ak)t , (4.21)

where M0 = 1 and for k ≥ 1

Mk =
k∏

i=1

1

ak−i+1Ci − akr(ak)
. (4.22)

The statement is immediately true for k = 0 from the initial assumptions.
Let us now assume that the statement (S) holds for k and prove it for k + 1.
We can write for the MGF of the outputAk+1(s, t) from the (k+1)th service
element (see [61])

E
[

eθAk+1(s,t)
]

≤ E

[

e
θ
(

A
Xk
k

(t)−Ak+1(s)
)
]

≤ E

[

e
θ
(

A
Xk
k

(t)−A
Xk
k

⊗Sk+1(s)
)
]

≤
∑

0≤u<s

Mke
akr(ak)(t−u)e−θCk+1(s−u)

≤ Mk

θCk+1 − akr(ak)
eakr(ak)(t−s) . (4.23)

In the first line we used that the output at time t is dominated by the cor-
responding input. In the second line we used the definition of the dynamic
server. In the third line we used the union bound and the induction hypothesis,
and finally we estimated the sum by an integral.

101

4. Stochastic Data Scaling Element - Process

Next, for the MGF of A
Xk+1

k+1 (s, t), Lemma 5 yields

E

[

eθA
Xk+1
k+1 (s,t)

]

= E
[

ea1Ak+1(s,t)
]

Since the bound on the MGF of Ak+1(s, t) from Eq. (4.23) is derived for
θ, we need to replace all the occurrences of θ by a1 (note that all the ak’s
depend on θ, according to their definitions from either Eq. (4.16) or (4.17)).
Consequently, ak is to be replaced by ak+1 for all k ≥ 0, which yields the
MGF bound

E

[

eθA
Xk+1
k+1 (s,t)

]

≤ 1

ak+1C1 − ak+1r(ak+1)

. . .
1

a2Ck − ak+1r(ak+1)

eak+1r(ak+1)(t−s)

a1Ck+1 − ak+1r(ak+1)

=Mk+1e
ak+1r(ak+1)(t−s) ,

which proves that the statement (S) holds for k + 1, and thus the induction
proof is complete.

In the following, having MGF bounds for the arrivals at the kth service
element, and the dynamic servers Sk(s, t), we can derive corresponding per-
node delay bounds Wk(t). Using the same arguments as in Eq. (4.14) we
obtain for all k ≥ 1 and d ≥ 0

Pr
(

Wk > d
)

≤ Lke
−θCkd , (4.24)

where the prefactors Lk’s are defined as

Lk =

k∏

i=1

1

ak−iCi − ak−1r(ak−1)
,

Note that replacing all the occurrences of θ from Lk with a1 yields the Mk’s
defined earlier in Eq. (4.22).

Let us next make the convenient choices

bk = inf
i=1...k

ak−iCi

102

4.4. Numerical Evaluation

such that Lk ≤
(

1
bk−ak−1r(ak−1)

)k

, and

b = sup
k=1,...,n

1

bk − ak−1r(ak−1)
.

We can thus bound the bound on Wk by

Pr
(

Wk > d
)

≤ bke−θCkd ,

for all k ≥ 1.
Finally, a bound on the end-to-end delayW =

∑

kWk can be formulated
as the optimization problem

Pr
(

W > d
)

≤ inf
d1+···+dn=d

{
be−θC1d1 + · · ·+ bne−θCndn

}
.

Letting C = supk=1,...,nCk we find the infimum (see [42])

Pr
(

W > d
)

≤ nb
n+1
2 e−

θ
n
Cd . (4.25)

From here one may easily determine that the quantiles of the end-to-end delay
grow as O

(
n2
)
, which proves the claim from the beginning of this section.

4.4 Numerical Evaluation

In this section we numerically compare the end-to-end delay bounds from
Theorem 1 with those obtained by the alternative node-by-node analysis pre-
sented in Subsection 4.3.2, and illustrate the corresponding order of growths.
Then we draw some insights on how the burstiness in arrival vs. scaling pro-
cesses affect the results from Theorem 9.

For Theorem 1 we directly use the delay bound from Eq. (4.10). In turn,
for the node-by-node analysis, we use the end-to-end delay bound

P
(

W > d
)

≤ inf
∑

k dk=d

{
∑

k

Lke
−θCkdk

}

(4.26)

for which the infimum can be computed exactly using a convex optimization
result from [42] (see also Eq. (4.24) for the values of Lk). We point out that
we do not use the expression from Eq. (4.25) which was subject to several

103

4. Stochastic Data Scaling Element - Process

Arrival Process Scaling Process
Poisson Bernoulli
MMOO Bernoulli
Poisson MMOO
MMOO MMOO

Table 4.1: Arrival and scaling processes.

convenient bounding choices; these were made in order to derive a result
which can concisely express the O(n2) growth.

We consider the flow transformation network scenario from Figure 4.8
with two examples of arrival processesA(t): Poisson with rate λ and Markov-
Modulated On-Off (MMOO). The MMOO process is represented in Fig-
ure 4.11.(a) in terms of the transition probabilities λ1 and λ2, and also the
peak-rate P , i.e., the process transmits at rate P while in state ‘on’ and is idle
while in state ‘off’. When λ1+λ2 = 1 thenA(t) has independent increments
and is thus a sum of Bernoulli random variablesB(λ1). We consider the scal-
ing (loss) processes from Figure 4.8 as MMOO processes as represented in
Figure 4.11.(b) (note that for the loss process the rate while in the ‘on’ state
is 1). See Table 4.1.

Figure 4.11: Representation of Markov-Modulated On-Off (MMOO) pro-
cesses.

For the MMOO process A(t) from Figure 4.11.(a) we have the following
bound on its MGF [36]

E
[

eθA(t)
]

≤ eθr(θ)t ,

where r(θ) = 1
θ log

λ1e
θP +λ2+

√
(λ1eθP+λ2)

2−4(λ1+λ2−1)eθP

2 . Similar bounds
apply for the MGF’s of the cumulative processes of the Xi’s, with different
parameters.

In the case when Xi,1’s are i.i.d. Bernoulli B(p) for some 0 < p < 1

104

4.4. Numerical Evaluation

2 4 6 8 10
0

1000

2000

3000

Number of nodes

D
e
la

y

Node−by−Node

Convolution−Form

(a) Poisson

2 4 6 8 10
0

1000

2000

3000

Number of nodes

D
e
la

y

Node−by−Node (more bursty)

Node−by−Node (less bursty)

Convolution−Form (more bursty)

Convolution−Form (less bursty)

(b) MMOO

Figure 4.12: Scaling of end-to-end delay bounds with Theorem 9 and the
method of node-by-node analysis (arrival process with rate 1 (Poisson in (a)
and two MMOO’s in (b) with P = 2 (less bursty) and P = 3 (more bursty)
and λ1 = 1

P), Bernoulli (0.75) scaling processes, violation probability ε =
10−3)

(i.e., µ1 = p in Figure 4.11.(b)) and A(t) is Poisson then we have explicit
expressions for the values of ak and r(ak)’s which appear in Eq. (4.15), and
in the final expressions for end-to-end delays (both with Theorem 9 and the
node-by-node analysis). These are

ak = log
(
1 + pk

(
eθ − 1

))
, r(ak) =

λpk
(
eθ − 1

)

log (1 + pk (eθ − 1))
.

In turn, if A(t) is a sum of Bernoulli random variablesB(λ1), i.e., λ1+λ2 =
1, then the expressions of r(ak)’s become

r(ak) =
log
(

1 + λ1

((
1 + pk

(
eθ − 1

))P − 1
))

log (1 + pk (eθ − 1))
.

We use the following numerical settings. The average rates of the arrivals
are normalized to one packet per one time unit. The utilization at the first
node is .75, i.e., C1 = 1.33. The capacities at the rest of the nodes are set as
Ck = an−1

an−k
C1, such that there is no loss in accuracy in the end-to-end delay

from Theorem 1, as a result of the bounding from Eq. (4.18).
Figures 4.12.(a,b) illustrate the order of growths of the end-to-end de-

lay bounds obtained with Theorem 1 and the node-by-node analysis for n =
1, . . . , 10 service elements in Figure 4.8, by plotting the corresponding ε-

105

4. Stochastic Data Scaling Element - Process

2 4 6 8 10
0

100

200

Number of nodes

D
e
la

y

MMOO
(less bursty)

MMOO (almost
no burstiness)

Poisson

MMOO
(more bursty)

Figure 4.13: Arrivals’ burstiness dominates scalings’ burstiness (three
MMOO scalings (µ1 = .67, .75, .99, average=.75) for each arrivals with av-
erage 1 (three MMOO’s with λ1 = .7, .4, .01, P = 2), ε = 10−3)

quantiles (in time units) with ε = 10−3. We consider Bernoulli scaling pro-
cesses (with µ1 = 1 − µ2 = .75 in Figure 4.11.(b)) and different arrival
processes (Poisson in (a) and two MMOO’s with different levels of burstiness
in (b); the parameters are displayed in the caption). For all the arrival pro-
cesses the figure clearly illustrates the O(n) vs. O(n2) order of growths of
the end-to-end delays. Moreover, as illustrated by (b), the O(n) results are
much less sensitive to the arrivals’ burstiness than the O(n2) results, indicat-
ing large pre-constants in the latter.

Figure 4.13 illustrates the impact of burstiness in the scaling processes
over the burstiness in the arrival processes for n = 1, . . . , 10 service elements
in Figure 4.8. We consider four arrival processes (one Poisson and three
MMOO’s, each with three levels of burstiness, by adjusting the transition
probability λ1 from Figure 4.11.(a)). For each arrival process we consider
three scaling processes as MMOO’s, each with three levels of burstiness, by
adjusting µ1 from Figure 4.11.(b), while keeping the same average rate of .75
(for the values of all the parameters see the caption).

Interestingly, the figure indicates that the burstiness in the arrivals com-
pletely dominates the burstiness in the scaling processes (the plots with dif-
ferent scalings’ burstiness are visually indistinguishable, for all four arrival
cases). This phenomenon can be justified by the independence assumption
between arrival and scaling processes, i.e., unless some forms of correlations
exist between the two (e.g., always drop when bursty traffic occurs), the scal-
ings’ burstiness has only a negligible impact on the arrivals’ burstiness. The
figure also illustrates that when there is almost no burstiness in the arrivals

106

4.4. Numerical Evaluation

(i.e., λ1 → 0 which means that the arrival process looks roughly like a pe-
riodic source of 2 (the peak rate P) packets every two time units) the delays
converge to roughly zero time units. As this would actually be the case for
such periodic arrivals, the figure provides evidence that the delay bounds from
Theorem 9 are reasonably accurate.

Since flow transformations are manifold and frequent, we believe that
the stochastic scaling elements open up the modeling scope of the stochastic
network calculus widely. To that end, we have introduced a versatile stochas-
tic scaling element and have shown how networks with flow transformations
could still be expressed in convolution-form. Consequently, as demonstrated
analytically as well as by numerical examples, the fundamental scaling prop-
erties of the network calculus are retained. These stochastic scaling element
models lay the theoretical foundation for a rich set of new applications of
network calculus, ranging from lossy networks over dynamic routing up to
network coding scenarios. While some of these may require further thought,
e.g., how to deal with non-Markov modulated scaling processes, many oppor-
tunities lie ahead.

In the previous chapter we also provided a model on the flow transforma-
tions, which is based on the sample path functions and the stochastic curve-
wise bounds. Together with the model introduced in this chapter, we seem-
ingly have two options when we model the flow transformation. That is not
an accurate opinion. Actually, the model with bounding functions is more
general than the latter one. If we model the stochastic scaling element with
the form AX(t), we can also construct the stochastic scaling curves such that
we can use the methods of the former model. However, there may be also
other ways, known or unknown, to model the flow transformations and we
may not know so many details (like the way to transform or the data granu-
larity to be transformed), but possibly still know the bounding curves, then
we simply use the former model. But that does not mean that the former one
is better. On the contrary, many times we do know many details of the scal-
ing processes, or assume to know priorly and later do some fitting work. In
this case, the latter model will gain more accuracy and flexibility when doing
scaler-server-commuting as well as analysing performance.

107

Chapter 5

Deconstruction of Stochastic

Data Scaling Element

In Chapter 3 and 4 we introduced two alternative data scaling elements to
model the flow transformation. The new models allow us to express the net-
work with flow transformations in convolution-form and derive the perfor-
mance bounds. On an abstract level, the demultiplexing of flows inside the
network is a very obvious and yet highly important case of the flow trans-
formation. While we have in Chapter 3 addressed it using the sample path
modeling of the scaling element, in this chapter, we come up with a new way
to solve this analytically hard problem by using the stochastic scaling element
for arrivals introduced in Chapter 4, and conversely by dint of analyzing the
demultiplexing, provide an insightful deconstruction of the scaling element.
This helps us to deeper understand the previous scaling models and advance
the performance bounds derivation. At the same time, recall that, with the
classical queueing networks theory, the demultiplexing analysis is typically
possible for the class of Poisson arrivals and Bernoulli demultiplexing pro-
cesses. We can now extend these classes in a greater generality, e.g., by con-
sidering Markov modulated demultiplexing processes and general classes of
the arrival processes (i.e., of flows) subject to demultiplexing. This is the
power of the scaling element (see Section 4.1). The results of this chapter are
from the joint work with F. Ciucu and J. Schmitt [145].

By the abstract demultiplexing operation we mean here the separation of
a flow into multiple subflows, one of which is subject to the analysis (e.g.,
with respect to delay). Although in Section 3.3.1 we attempted to model the
demultiplexing with the sample paths of the scaling element and then stochas-

109

5. Deconstruction of Stochastic Data Scaling Element

tically bound these sample paths accordingly, the indirect approach still re-
stricts itself on the ambiguity of the description. On the other hand, many
concrete real-world utilities of the abstract demultiplexing like losing part of a
data flow in, e.g., a wireless transmission, or distributing a data flow to a set of
servers for load balancing, or simply a randomized multi-path routing require
a dynamic expression of the scaling element. In the previous chapter we did
not really touch this problem although we have already provided the required
expression, because on one hand, the main focus of the previous chapter is
to preserve the convolution-form expression of the network even after using
the new scaling element, on the other hand, in that scope the meaning of the
model can not really overtake the sample path description in Chapter 3. Now,
the approach coming up in this chapter provides a new viewpoint to model
the demultiplexing, which is based on finding an equivalent formulation for
the demultiplexing as a leftover service curve computation problem. And
this explains the meaning of all the scaling elements (deterministic and two
stochastic ones) used for demultiplexing. Interestingly, with respect to the
achievable delay bounds the new method and the one in Section 4.3.1 perform
quite differently. Although the new method can not completely dominates the
other (see Section 5.4), it still shows a clear advantage in scenarios where the
subflow of interest is rather small and only rarely outperformed by the other.

5.1 A Novel Model for Flow Demultiplexing

In this section, we introduce a novel model for the operation of demultiplexing
a flow into two flows.

Let us consider that a flow carried between source and destinations, is
demultiplexed into two subflows, for example, a part of the original flow is
routed to another destination out of the source node. We denote these sub-
flows as two arrival processes A(1)(t), A(2)(t) satisfying

A(t) = A(1)(t) +A(2)(t) ,

for all t ≥ 0. If we describe the splitting operation on the data level as an
indicator function 1{“this data goes to destination (1)”}, which equals to 1 if term true,

0 otherwise, we have that A(1)(t) =
∑A(t)

i=1 1{“data i goes to destination (1)”}. De-
noting this indicator function for data i as Xi, we utilize the scaling element

X = (Xi)i≥1 and denote all the data to destination (1) as the scaled arrivals

110

5.1. A Novel Model for Flow Demultiplexing

(a)

FIFO

(b)

FIFO

Figure 5.1: Two equivalent systems for the demultiplexing operation. In (a),
the output processD(t) is demultiplexed according to a scaling process X. In
(b), the input process A(t) is virtually demultiplexed according to the same

X. In both (a) and (b), the node S runs FIFO scheduling.

AX(t),

A(1)(t) =

A(t)
∑

i=1

Xi = AX(t) , ∀t ≥ 0 .

Clearly, with 1 = (1, 1, . . .) we get A(2)(t) = A1−X(t). Thus the demulti-
plexing is represented as

A(t) = AX(t) +A1−X(t) .

Note, as we assume that the demultiplexing operation happens instantaneously,
the scaling element has no queue. For brevity we focus on the particular case
of two subflows demultiplexing. In general, the demultiplexing operation into
n subflows can be modeled with multiple scaling processes X1, . . . ,Xn, such
that

∑n
j=1 Xj = 1.

Let us now consider a work-conserving network node, denoted by S,
with arrival and departure processes A(t) and D(t), respectively. We assume
that a demultiplexing process X, which is independent from the data flows,
splits D(t) into two sub-processes: DX(t) andD1−X(t) (see Figure 5.1.(a)).
Based on the demultiplexing process X, we can virtually split the arrival pro-
cess A(t) into two sub-processes, AX(t) and A1−X(t), and we denote the
corresponding (virtual) output processes by DAX(t) and DA1−X(t) (see Fig-
ure 5.1.(b)). The next lemma establishes the equivalence between the two
systems from Figures 5.1.(a,b), and it is instrumental for our proposed ap-
proach to analyze queueing systems with general demultiplexing processes.

Lemma 7. (Equivalent Systems for the Demultiplexing Operation) Consider

the systems (a) and (b) depicted in Figure 5.1 and described above. If the

node is locally FIFO then the two systems are equivalent in the sense that for

111

5. Deconstruction of Stochastic Data Scaling Element

all t ≥ 0

DX(t) = DAX(t) and (5.1)

D1−X(t) = DA1−X(t) .

The proof is straightforward and relies on the assumption of locally FIFO
scheduling, i.e., A(t)’s packets are served in the order of their arrivals.

Proof. Let t ≥ 0. The departure process D(t) from system (a) can be rep-
resented as a sequence d1d2 · · · dD(t), where di = i, i.e., di’s stand for the
sequence numbers of D(t)’s packets. Then, because the scaling operation
does not alter the order of the packets’ arrivals, with some abuse of notation,
the X-scaled departure processes DX(t) and D1−X(t) can be represented as
the subsequences

DX(t) = dx1dx2 · · · dxi
· · · dxm

and

D1−X(t) = dy1dy2 · · · dyj
· · · dyn

,

where m,n ∈ [0, D(t)],m + n = D(t), xi, yj ∈ [0, D(t)], xi < xi+1, yj <
yj+1, and xi 6= yj, ∀i ∈ [0,m] and j ∈ [0, n]. That means, those pack-
ets in D(t) are mutually demultiplexed into DX(t) and D1−X(t). In turn,
because the node S runs FIFO scheduling, the arrival process A(t) must be
represented (again, with abuse of notation) as the following sequence

A(t) = d1d2 · · · dD(t)dD(t)+1 · · · dA(t) ,

and furthermore after using the same scaling process X onto this sequence
of arrivals we will get the virtual sub-processes AX(t) and A1−X(t). So
the starting part must stay the same as for the X-scaled departures, and the
remainder arrival packets are X-scaled in the similar ways (with abuse of
notation). Thus, we have

AX(t) :=dx1dx2 · · · dxi
· · · dxm

dxm+1 · · · dxm+a
· · · dxm+u

and

A1−X(t) :=dy1dy2 · · · dyj
· · · dyn

dyn+1 · · · dyn+b
· · · dyn+v

,

where u, v ∈ [0, A(t) − D(t)], u + v = A(t) − D(t), xm+a, yn+b ∈
[0, A(t)], xm+a < xm+a+1, yn+b < yn+b+1, and xm+a 6= yn+b, ∀a ∈ [0, u]
and b ∈ [0, v]. So far, we only changed the notation and the departed se-
quences up to time t are still those two sequences dx1dx2 · · · dxi

· · · dxm
and

dy1dy2 · · · dyj
· · · dyn

. We can find a matched sequence of dx1 · · · dxi
· · · dxm

112

5.2. Single Node Deconstruction: Main Idea

in AX(t), which proves that

DAX(t) = dx1dx2 · · · dxi
· · · dxm

,

and thus DX(t) = DAX(t). Similarly, one can show that D1−X(t) =
DA1−X(t), which completes the proof.

Using the equivalence of systems (a) and (b) from Figure 5.1, we will next
compute statistical end-to-end delay bounds in queueing systems subject to
the demultiplexing operation. The basic idea is to use the representation from
system (b) in order to construct the leftover dynamic servers for the demul-
tiplexed processes. Using these service processes, the desired performance
bounds follow by applying conventional techniques from stochastic network
calculus. This provides us a new viewpoint to renew our understanding about
the effect of the scaling element models. It seems like a deconstruction of
the scaling element, because we dismiss it at the place where its modeling
objects, the flow transformation operations, really happen. We move these
effects to another time phase of the flow, for example in this case, to the time
phase before being served.

5.2 Single Node Deconstruction: Main Idea

In this and the following sections, we compute end-to-end delay bounds in
a network with flow demultiplexing. For illustrative purposes, we focus on
the single and two nodes cases, and later comment on the generalization to an
arbitrary number of nodes. For numerical comparisons, we also reproduce an
existing parallel result from Chapter 4.

Before we continue, let us recall the leftover dynamic server. Adjusted
using Lemma 7 for the demultiplexing, the leftover dynamic server for AX,
obtained in the particular case of FIFO scheduling (see Eq. (2.19) or [54, 95])
, is

SLO(s, t) =
[
S(s, t)−A1−X(s, t− x)

]+
1{t−x>s} ,

where x ≥ 0 can be regarded as an optimization parameter (the meaning
can be found in Eq. (2.26)). Referring to Figure 5.1.(a), we are interested in
the virtual delay of the (sub-)flow of interest DX. The corresponding arrival
process isAX (see the interpretation from system (b)), and the leftover service
process is SLO(s, t) shown above. Then, a probabilistic delay bound can be
obtained as below

Pr(W (t) ≥ d)

113

5. Deconstruction of Stochastic Data Scaling Element

= Pr
(
AX(t− d) ≥ DAX(t)

)

= Pr
(
AX(t− d) ≥ DX(t)

)

≤ Pr

(

sup
0≤s<t−d

{

AX(t− d)−AX(s)−

[
S(s, t)−A1−X(s, t− x)

]+
1{t−x>s}

}

≥ 0

)

,

where in the third line we used Lemma 7, in the fourth line we used the
definition of a service process and moved the infimum to the left side of the
inequality. The derivation can be continued depending on two cases for x:

(i) x > d, i.e., t− x < t− d:

= Pr

(

max

(

sup
0≤s<t−x

{

AX(s, t− d)−
[
S(s, t)−A1−X(s, t− x)

]+
}

,

sup
t−x≤s<t−d

{
AX(s, t− d)

}
)

≥ 0

)

= Pr

(

max

(

sup
0≤s<t−x

{

AX(s, t− d)−
[
S(s, t)−A1−X(s, t− x)

]+
}

,

AX(t− x, t− d)

)

≥ 0

)

= 1 ,

(ii) 0 ≤ x ≤ d, i.e., t− x ≥ t− d:

= Pr

(

sup
0≤s<t−d

{

AX(s, t− d)−

[
S(s, t)−A1−X(s, t− x)

]+
}

≥ 0

)

≤ Pr

(

sup
0≤s<t−d

{

A(s, t− d)−

S(s, t) +A1−X(t− d, t− x)
}

≥ 0

)

.

114

5.3. Two Nodes Deconstruction and Delay Bounds

FIFO

... FIFO
...

Figure 5.2: A network with two nodes, S1 and S2, and a demultiplexer ele-
ment in between.

The optimal value is for x = d, and the last probability becomes

= Pr

(

sup
0≤s<t−d

{A(s, t− d)− S(s, t)} ≥ 0

)

.

Interestingly, the same bound can be obtained for the delay of the aggregate
departure flowD. In other words, the per-flow delay bound is equal to the ag-
gregate delay bound; the equality between the per-flow and aggregate delays
is known to hold, on average, in the case of Poisson arrivals and Bernoulli
demultiplexing, as a consequence of the PASTA property [111].

5.3 Two Nodes Deconstruction and Delay Bounds

In this section, we derive statistical end-to-end delay bounds in a network
consisting of two service nodes and one scaling element implementing a de-
multiplexing operation in between (see Figure 5.2). We shall use the idea
presented above, of first computing the leftover service curve for one de-
multiplexed flow of interest. Consider the network scenario of interest from
Figure 5.2(a), of which the first node and the demultiplexing element can be
equivalently transformed as detailed in Lemma 7. The result is shown in Fig-
ure 5.2(b). The next theorem provides the end-to-end delay bounds under
different assumptions regarding the increments of the arrival process A(t).

Theorem 10. (Statistical End-to-End Delay Bounds in a Two Nodes Net-

work with Demultiplexing) Consider the network scenario from Figure 5.2(a).

A stationary arrival process A(t) crosses two FIFO nodes offering the sta-

tionary service processes S1(s, t) and S2(s, t). Assume the MGF bounds

of arrivals and services: MA(s,t)(θ) ≤ eθr(θ)(t−s) and MSk(s,t)(−θ) ≤
e−θCk(t−s), where k = 1, 2 and for some θ > 0. The demultiplexing pro-

cess X is such that Xi’s are either 0 or 1, and denote δ(θ) = 1
θ logMX(θ)

and δ̄(θ) = 1
θ logM1−X(θ). All the processes are assumed to be statistically

115

5. Deconstruction of Stochastic Data Scaling Element

independent, and we focus on the end-to-end subflow with departure process

E(t).

(1) If A(t) has statistically independent increments then under some sta-

bility conditions, to be explicitly given in the proof, we have the following

delay bounds for all d ≥ 0

Pr(W (t) ≥ d) ≤ K1e
−θC2(d−x) +

K2e
−θC1deθδ̄(θ)r(θδ̄(θ))(d−x) +K3e

−θC1deθ(C1−C2)(d−x) ,

where K1, K2 and K3 are constants to be given in the proof. x is an opti-

mization parameter introduced by FIFO leftover service.

(2) If the increments of A(t) are not necessarily independent then under

some stability conditions, to be explicitly given in the proof, we have the fol-

lowing delay bounds for all d ≥ 0

Pr(W (t) ≥ d) ≤ Ke−θC2d ,

where the constant K will be given in the proof.

Proof. As discussed in Section 5.1, we can equivalently transform the system
(a) from Figure 5.2 into the system (b) from the same figure. Then we have
for the end-to-end subflow of interest with input AX(t) and output E(t):

Pr(W (t) ≥ d)

=Pr
(
AX(t− d) ≥ E(t)

)

≤Pr
(

sup
0≤s<t−d

{
AX(t− d)−AX(s)− SLO ⊗ S2(s, t)

}
≥ 0

)

≤Pr
(

sup
0≤s<t−d

sup
s≤u≤t

{
AX(t− d)−AX(s)− SLO(s, u)− S2(u, t)

}
≥0

)

=Pr

(

sup
0≤s<t−d

sup
s≤u≤t

{
AX(t− d)−AX(s)−

[
S1(s, u)−

A1−X(s, u− x)
]+

1{u−x>s} − S2(u, t)
}
≥ 0

)

. (5.2)

In the second line we used the definition of the virtual delay process for the ar-
rival process AX(t) and the departure process E(t), and also the equivalence
W (t) ≥ d ⇔ AX(t − d) ≥ E(t). In the third line we used the defini-
tion and the convolution property of service processes and then expanded the
convolution and the expression of SLO(s, u) in the rest lines.

116

5.3. Two Nodes Deconstruction and Delay Bounds

The rest of the proof follows the derivations from Section 5.2, depending
on the value of the parameter x:

(i) x > d, or, u− x < t− d. Let us consider only a part of the domain for
the supremum as below

sup
t−x≤s<t−d

sup
s≤u≤t

{
AX(t− d)−AX(s)−

[
S1(s, u)−A1−X(s, u− x)

]+
1{u−x>s} − S2(u, t)

}

= sup
t−x≤s<t−d

sup
s≤u≤t

{
AX(t− d)−AX(s)− S2(u, t)

}

≥ 0 ,

and thus the optimal value of x does not fall in this interval.
(ii) 0 ≤ x ≤ d, and we continue Eq. (5.2) as follows:

=Pr

(

sup
0≤s<t−d

{

max

(

sup
s≤u≤s+x

{

AX(s, t− d)−
[
S1(s, u)−A1−X(s, u− x)

]+
1{u−x>s} − S2(u, t)

}

,

sup
s+x<u≤t

{

AX(s, t− d)−
[
S1(s, u)−

A1−X(s, u− x)
]+

1{u−x>s} − S2(u, t)
})}

≥ 0

)

≤
∑

0≤s<t−d

Pr
(
AX(s, t− d)− S2(s+ x, t) ≥ 0

)
+

∑

0≤s<t−d

∑

s+x<u≤t

Pr
(

AX(s, t− d)−

[
S1(s, u)−A1−X(s, u− x)

]+ − S2(u, t) ≥ 0
)

≤
∑

0≤s<t−d

Pr
(
AX(s, t− d)− S2(s+ x, t) ≥ 0

)
+

∑

0≤s<t−d

∑

s+x<u≤t

Pr
(

AX(s, t− d) +A1−X(s, u− x)−

S1(s, u)− S2(u, t) ≥ 0
)

. (5.3)

The first line is just a separation of the interval of u in order to eliminate the
indicator function “1". Besides that we applied the union bound in the second
line. In the third line, we eliminated “[·]+”. Next we use the properties of the

117

5. Deconstruction of Stochastic Data Scaling Element

arrival process A(t) in order to prove (1) and (2), respectively.

(1)A(t) has independent increments. Since the two intervals [s, t−d] and
[s, u−x] are overlapping, we can merge the overlapping parts ofAX(s, t−d)
and A1−X(s, u − x). Yet we do not know which value, t − d or u − x, is
larger. So from Eq. (5.3) we separate the interval of u as below

≤
∑

0≤s<t−d

Pr
(
AX(s, t− d)− S2(s+ x, t) ≥ 0

)
+

∑

0≤s<t−d

∑

s+x<u≤t−d+x

Pr
(

AX(u − x, t− d) +

A(s, u− x)− S1(s, u)− S2(u, t) ≥ 0
)

+

∑

0≤s<t−d

∑

t−d+x<u≤t

Pr
(

A1−X(t− d, u− x) +

A(s, t− d)− S1(s, u)− S2(u, t) ≥ 0
)

≤
∑

0≤s<t−d

e−θC2(t−s−x)eθδ(θ)r(θδ(θ))(t−d−s) +
∑

0≤s<t−d

∑

s+x<u≤t−d+x

e−θC1(u−s)e−θC2(t−u)eθr(θ)(u−x−s)eθδ(θ)r(θδ(θ))(t−d−u+x)

+
∑

0≤s<t−d

∑

t−d+x<u≤t

e−θC1(u−s)e−θC2(t−u)eθr(θ)(t−d−s) ·

eθδ̄(θ)r(θδ̄(θ))(u−x−t+d)

≤ e−θC2(d−x)

eθ(C2−δ(θ)r(θδ(θ))) − 1
+

1
eθ(C1−r(θ))−1

− 1
eθ(C2−δ(θ)r(θδ(θ)))−1

1− eθ(C1−C2−r(θ)+δ(θ)r(θδ(θ)))
e−θC1d ·

eθ(C1−C2)(d−x) +
e−θC1d

(

eθδ̄(θ)r(θδ̄(θ))(d−x) − eθ(C1−C2)(d−x)
)

(

1− eθ(C1−C2−δ̄(θ)r(θδ̄(θ)))
)

(θC1 − θr(θ))
. (5.4)

In the second line we used the Chernoff bound for some θ > 0 together with
Lemma 5 for i.i.d. X ′

is (Eq. 4.8). Because A has independent increments
and is independent of X, it follows that AX(u − x, t − d) is independent
of A(s, u − x) and A1−X(t − d, u − x) is independent of A(s, t − d). In
the case when X is MMSP, we have that δ(θ) = 1

θ log sp (φX(θ)λX) and
δ̄(θ) = log sp (φ1−X(θ)λ1−X), according to Eq. (4.7). In the third line,
imposing the following two stability conditions

θ(C1 − r(θ)) > 0 and θ(C2 − δ(θ)r(θδ(θ)) > 0

118

5.3. Two Nodes Deconstruction and Delay Bounds

for the first term by letting t → ∞, we get an infinite geometric series; for
the second term we compute the sum of geometric series over u and get the
exact sum of infinite geometric series by letting t → ∞; the computation for
the third term is similar. By letting

K1 =
1

eθ(C2−δ(θ)r(θδ(θ))) − 1

K2 =
1

(
eθ(C1−r(θ)) − 1

)(

1− eθ(C1−C2−δ̄(θ)r(θδ̄(θ)))
)

K3 = K1 ·K2 ·
(

1− eθ(C1−δ(θ)r(θδ(θ))−δ̄(θ)r(θδ̄(θ)))
)

in Eq. (5.4), we get

Pr(W (t) ≥ d) ≤ K1e
−θC2(d−x) +

K2e
−θC1deθδ̄(θ)r(θδ̄(θ))(d−x) +K3e

−θC1deθ(C1−C2)(d−x) ,

and the proof of (1) is complete.

(2) The increments of A(t) are not necessarily independent. We can con-
tinue Eq. (5.3) as follows

≤
∑

0≤s<t−d

e−θC2(t−s−x)eθδ(θ)r(θδ(θ))(t−d−s) +

∑

0≤s<t−d

∑

s+x<u≤t

e−θC1(u−s)e−θC2(t−u)·E
[

eθ(A
X(s,t−d)+A1−X(s,u−x))

]

,

after using the Chernoff bound. To compute the bound of the expectation we
use Hölder’s inequality because of the possible dependence between AX and
A1−X. Let g, h ≥ 1 such that 1

g +
1
h = 1. For t→ ∞, we continue the above

inequality with

≤ e−θC2(d−x)

θ(C2 − δ(θ)r(θδ(θ)))
+

e−θC1deθ(C1−C2)(d−x)

θ(C1 − C2 − δ̄(hθ)r(hθδ̄(hθ))) · θ(C2 − δ(gθ)r(gθδ(gθ)))
.

Here, without losing tightness, we used an upper bound on the infinite geo-
metric series for simplicity. Let us now assume the stability conditions

θ (C2 − δ(θ)r (θδ(θ))) > 0

119

5. Deconstruction of Stochastic Data Scaling Element

θ (C2 − δ(gθ)r (gθδ(gθ))) > 0

θ
(
C1 − C2 − δ̄(hθ)r

(
hθδ̄(hθ)

))
> 0 .

To continue the previous derivation, we use the next convex optimization re-
sult

inf
x>0

{
αe−βx + eγx

}
=

(
αβ

γ

) γ
β+γ β + γ

β
.

We finally obtain that

Pr(W (t) ≥ d) ≤ Ke−θC2d ,

where

K =
C1

C2

(
C1

(C1 − C2)θ(C2 − δ(θ)r(θδ(θ))

)1−
C2
C1

·
(

θ(C1 − C2 − δ̄(hθ)r(hθδ̄(hθ))) · θ(C2 − δ(gθ)r(gθδ(gθ))
)−

C2
C1

.

The proof is now complete.

5.4 Delay Bounds Comparison

We compare the analytical results of Theorem 10 with Theorem 9 quantita-
tively. Before we can do so, we need to provide some results regarding MGF
bounds, because for both methods, we assume to have the MGF bounds for
the arrivals and the service, and also need to use the MGF bounds of the
scaling processes and the scaled processes to compute the delay bounds.

5.4.1 MGF Bounds of the Arrivals and the Scalings

In this section, we present necessary prerequisites regarding MGF bounds
for three examples of arrival processes A(t): Bernoulli(-modulated) arrivals
with rate R together with Bernoulli parameter p0, Poisson arrivals with rate
λ and MMOO arrivals with peak rate P . We also present results for the
MGF bounds of scaled processes with two examples of scaling processes X:
Bernoulli scaling and MMOO scaling.

For Bernoulli arrivals with rate R, we consider arrivals with constant rate
R passing through a Bernoulli scaling process with Bernoulli parameter p0.
We know that the MGF of a Bernoulli r.v. XB with parameter pB ∈ [0, 1]

120

5.4. Delay Bounds Comparison

is MXB
(θ) = 1 − pB + pBe

θ. So Lemma 5 yields the MGF bound for the
i.i.d. Bernoulli arrivals with rate R and probability p0 ∈ [0, 1] as

MA(s,t)(θ) = MR(t−s)

(
log
(
1− p0 + p0e

θ
))

= E
[

elog(1−p0+p0e
θ)R(t−s)

]

=
(
1− p0 + p0e

θ
)R(t−s)

.

We rewrite this as

MA(s,t)(θ) = eθ·
1
θ
log(1−p0+p0e

θ)R·(t−s) = eθ·r(θ)·(t−s),

where we denote 1
θ log

(
1− p0 + p0e

θ
)
R as r(θ) according to the form of

MGF bound for the arrivals in Theorem 10. Next, we derive δ(θ) for the
scaling process X as a Bernoulli process with parameter p ∈ [0, 1] and δ̄(θ)
for its complementary scaling process 1 − X. Again, knowing the MGF of
the i.i.d. Bernoulli process X we have

δ(θ) =
1

θ
logMX(θ) =

1

θ
log
(
1− p+ peθ

)
,

δ̄(θ) =
1

θ
logM1−X(θ) =

1

θ
log
(
p+ (1− p)eθ

)
.

Now we have r(θ), δ(θ) as well as δ̄(θ). As all other parameters in Theo-
rem 10 are already given, we can compute the delay bounds for the two nodes
network. On the other hand, noting that a1 is θδ(θ), we can use Theorem 9 to
compute alternative delay bounds.

In the following, we consider the following scenario: Poisson process as
arrivals and Markov-Modulated On-Off (MMOO) process as scaling. The
MMOO scaling processes are presented in Figure 5.3. µ1 and µ2 are tran-

Figure 5.3: Complementary MMOO scaling processes.

sition probabilities. The processes let data pass along this subflow while in
state ‘on’ (thus the rate is 1) and block while in state ‘off’. If the scaling

121

5. Deconstruction of Stochastic Data Scaling Element

processes are MMOO, we derive δ(θ) and δ̄(θ) from Theorem 10 as

δ(θ)=
1

θ
log sp (φX(θ)λX)

=
1

θ
log

µ2 + µ1e
θ +

√

(µ2 + µ1eθ)
2 − 4(µ1 + µ2 − 1)eθ

2
,

δ̄(θ)=
1

θ
log sp (φ1−X(θ)λ1−X)

=
1

θ
log

µ1 + µ2e
θ +

√

(µ1 + µ2eθ)
2 − 4(µ2 + µ1 − 1)eθ

2
,

where µ1 and µ2 have the following relation for Figure 5.3(a), given the av-
erage ‘on’ probability p for scaling process X,

p =
1− µ2

1− µ1 + 1− µ2
.

Then, of course, the scaling process 1 − X has the average ‘on’ probability
1 − p. Hence, knowing p, given µ1 we can compute µ2, and vice versa.
Further knowing the MGF bound of the Poisson arrival process, which is

MA(t)(θ) = eθr(θ)t, where r(θ) =
1

θ
λ(eθ − 1) ,

we can again use Theorem 10 to compute the delay bounds for the two nodes
network.

Similarly, considering an MMOO process as arrival process, we use P
as the peak rate instead of 1 and λ1, λ2 as transition probabilities instead of
µ1, µ2. We compute the MGF bound of the arrivals as

E
[

eθA(t)
]

≤ eθr(θ)t ,

where r(θ) = 1
θ log

λ1e
θP +λ2+

√
(λ1eθP +λ2)2−4(λ1+λ2−1)eθP

2 . For other com-
binations of different arrival and scaling cases, we have similar computations.

5.4.2 Delay Bounds: Numerical Examples

Next, we numerically compare the statistical delay bounds using both meth-
ods in the above mentioned three examples of arrivals: Bernoulli with prob-
ability p0 and rate R, Poisson with rate λ, and MMOO with peak rate P and

122

5.4. Delay Bounds Comparison

transition probabilities λ1, λ2. We consider the network senario with two
nodes shown in Figure 5.2(a). For the scaling process we consider for two
examples: Bernoulli process with probability p and MMOO process with av-
erage probability p and transition probabilities µ1, µ2. Here, we only show
the results for MMOO arrivals with MMOO scaling, so we have five combi-
nations and for all the combinations we compare the statistical delay bounds
of the two nodes network using the dual analytical methods presented in The-
orem 9 and 10. Moreover, for the five combinations we compare the delay
bounds in different utilizations for the first node - low and high utilization
(30% and 80%). As a reference, we also provide the results of discrete-event
simulations. We use OMNeT++ [142] version 4.2 to simulate the queueing
network. To compute the empirical 10−3-quantiles, we observe 106 packets
and use the P2 algorithm [78] for calculating the quantiles without storing
so many observations. Random number generating during the simulations is
done using the class cLCG32.

In the following, we give the numerical settings. First, the service rate of
the first node C1 is normalized to one packet per time unit. Correspondingly,
we set the utilization of the first node as either 0.3 or 0.8, i.e., the average
rates of arrivals are set as 0.3 and 0.8, respectively. We let R = 2, thus in
the case of Bernoulli arrivals p0 equals to 0.15 and 0.4, respectively. For the
case of MMOO arrivals, we also set P = 2 and λ1 = 0.75. With the average
passing probability p of the scaling process X the capacity at the second node
C2 is set to C2 = p · C1. These settings guarantee the stability conditions.
We vary p from 0.1 to 0.9 in steps of 0.1. In the case of MMOO scaling,
we set µ1 as 0.75. We plot the ε-quantiles (in time units) of the end-to-end
delay bounds with ε = 10−3. In all figures, we can perceive, that the delays
decrease for higher values of the pass probabilities p. This behavior is due to
setting C2 = p · C1 for a constant C1.

Figure 5.4 shows the statistical delay bounds obtained with Theorem 10
(new method) and Theorem 9 (existing result) as well as the simulation results
in the case of Bernoulli arrivals and Bernoulli scaling. For demultiplexing
probabilities p ≤ 0.7 the figures clearly illustrate the order of the results, with
the new leftover service computation method as a superior option especially
for smaller pass probabilities p.

For p > 0.7, the results of Theorem 10 (with independent increments)
and Theorem 9 are nearly the same. Going to the higher utilization of 0.8 in
Figure 5.4.b of course results in higher delays, but also seems to loosen the
bounds somewhat as the gap to the simulation results grows.

Figure 5.5 shows the statistical delay bounds in the case of Bernoulli ar-
rivals and MMOO scaling. Basically the same observations as in the previous

123

5. Deconstruction of Stochastic Data Scaling Element

0.1 0.3 0.5 0.7 0.9
0

20

40

60

80

Demultiplexing probability

D
e
la

y

Existing Result

New Method

Simulation

(a) Utilization of S1=0.3

0.1 0.3 0.5 0.7 0.9
0

200

400

Demultiplexing probability

D
e
la

y

Existing Result

New Method

Simulation

(b) Utilization of S1=0.8

Figure 5.4: Bernoulli arrivals, Bernoulli scaling.

0.1 0.3 0.5 0.7 0.9
0

200

400

600

Demultiplexing probability

D
e
la

y

Existing Result

New Method

Simulation

(a) Utilization of S1=0.3

0.1 0.3 0.5 0.7 0.9
0

1000

2000

3000

Demultiplexing probability

D
e
la

y

Existing Result

New Method

Simulation

(b) Utilization of S1=0.8

Figure 5.5: Bernoulli arrivals, MMOO scaling.

0.1 0.3 0.5 0.7 0.9
0

40

80

Demultiplexing probability

D
e
la

y

Existing Result

New Method

Simulation

(a) Utilization of S1=0.3

0.1 0.3 0.5 0.7 0.9
0

200

400

Demultiplexing probability

D
e
la

y

Existing Result

New Method

Simulation

(b) Utilization of S1=0.8

Figure 5.6: Poisson arrivals, Bernoulli scaling.

124

5.4. Delay Bounds Comparison

0.1 0.3 0.5 0.7 0.9
0

200

400

600

Demultiplexing probability

D
e
la

y

Existing Result

New Method

Simulation

(a) Utilization of S1=0.3

0.1 0.3 0.5 0.7 0.9
0

1000

2000

3000

Demultiplexing probability
D

e
la

y

Existing Result

New Method

Simulation

(b) Utilization of S1=0.8

Figure 5.7: Poisson arrivals, MMOO scaling.

0.1 0.3 0.5 0.7 0.9
0

400

800

1200

Demultiplexing probability

D
e
la

y

Existing Result

New Method

Simulation

(a) Utilization of S1=0.3

0.1 0.3 0.5 0.7 0.9
0

1500

3000

4500

Demultiplexing probability

D
e
la

y

Existing Result

New Method

Simulation

(b) Utilization of S1=0.8

Figure 5.8: MMOO arrivals, MMOO scaling.

125

5. Deconstruction of Stochastic Data Scaling Element

paragraph, for Bernoulli arrivals and Bernoulli scaling, can be made. It is
interesting to note, however, how the MMOO scaling leads to much higher
delay bounds compared to the Bernoulli scaling case.

Next, Figure 5.6-5.7 display the same as Figure 5.4-5.5, but now for Poi-
son arrivals. For most of it, the conclusions for the Poisson arrivals are the
same as for the Bernoulli arrivals, yet one interesting observation is that for
Poisson arrivals and Bernoulli scaling for the high utilization case, the leftover
service compution results in slightly, but clearly visible worse delay bounds
than the method from Theorem 9. This is not the case for the MMOO scaling
which indicates that things are not so simple here ...

Figure 5.8 shows the statistical delay bounds in the case of MMOO ar-
rivals and MMOO scaling. Note that in this scenario we do not have inde-
pendent increments any more and and thus have to resort to the respective
case in Theorem 10. We can see that the method by commuting service curve
and scaling element now clearly dominates the leftover service method. As a
general remark, we can observe that the bounds are quite pessimistic for low
values of the pass probability p when compared to the simulation results. It
is simply harder to cope with correlations in arrivals and scaling processes.

To summarize, the leftover amount of service should be generally more
than that scaled part by using Lemma 6 in particular when the utilization less
than 1, and hence, enables the derivation of tighter bounds. But the effort on
extra processing the dependence causes some loss of the tightness when using
Theorem 10, e.g., using Hölder inequality may cause this problem. However,
the meaning of the leftover service model is clearer than the exact dynamic
server model. It exactly reflect the system behaviour. The ambiguous treat-
ment (Lemma 6 and Theorem 9), though lose some tightness, still has its own
advantage. The obvious one is that it can apply to the data enlarging case of
flow transformation. If we use leftover model, we have to introduce a virtual
flow adhereing to the original one, which is not that flexible like the exact
dynamic server model in Lemma 6.

5.5 N Nodes Deconstruction

In the previous section we compared the results obtained by the dual methods
from Theorem 10 and Theorem 9 for some numerical examples. We can see
that, on one hand, Theorem 10 provides the opportunity to utilize some ad-
ditional information on arrivals to show an advantage, especially in scenarios
where the subflow of interest is small. On the other hand, a disadvantage of
using the leftover service curve method is that the delay bound computation

126

5.5. N Nodes Deconstruction

...

...

...

...

...

...

=where

Figure 5.9: A flow demultiplexing network consisting of services and scaling
elements.

is not easily extensible to the n nodes case. This is because we would have
to introduce different “x” for the leftover service curve element at each node,
which makes the analytical solution complicated. In contrast, Theorem 9 is
more easily applicable to the n nodes case.

Albeit the complexity of the calculation, what we compare are in fact the
methods behind these two theorems, one is commuting the scaling and the
service elements, the other changes to the leftover dynamic server viewpoint
(Lemma 6 and 7). It is obvious to see that the latter is the actual understand-
ing of the scaling when we apply it for dealing with the demultiplexing. A
demultiplexing operation is transformed into an inherently equivalent flow
multiplexing, which means the use of the scaling element for the demulti-
plexer is trivial and should be dismissed. We view this phenomena as the
deconstruction of the scaling element (it is intuitive by comparing Figure 5.1
and 4.7). This deconstruction also supports the n nodes modeling and anal-
ysis. In the following, we sketch the iterative computation steps to be taken,
but keep the concrete computation as future work.

Consider a network scenario from Figure 5.9(a) which is the general ex-
tension of Figure 5.2(a). We can firstly apply all the scaling effects to A
and after iteratively computing the leftover service curves we then obtain the
transformed system in Figure 5.9(b). The iteration can be stated as follows

SLO1(s, t) =
[
S1(s, t)−A1−X(s, t− x1)

]+
1{t−x1>s}

127

5. Deconstruction of Stochastic Data Scaling Element

SLOn−1(s, t) =
[

(SLOn−2 ⊗ Sn−1)(s, t) −

AX1X2···(1−Xn−1)(s, t− xn−1)
]+

1{t−xn−1>s} .

As a consequence we face with a single node model

AX1X2···(1−Xn−1)

−−−−−−−−−−−−→ SLOn−1 ⊗ Sn
E−→

Besides demultiplexing, the deconstruction idea also applies conversely for
the case where the scaling element models the flow enlarging or aggregating.
The difference from the demultiplexing case shown in Figure 5.9 is that the
flow we observe changes from the destination end to the source end. Consider
the n nodes with n − 1 scalers case, at each scaler the flow is enlarged. If
we denote the departure at node i as Di, then we face with the single node
network for the performance analysis

A−→ SLOn
E−→

whereSLOn=S1⊗
([

S2 ⊗
(

· · ·
([

Sn −D
Xn−1−1

n−1

]+
)

· · ·
)

−DX1−1

1

]+
)

for n ≥ 2. Note, because we can not guarantee a FIFO scheduling for the
original flow and the enlarged part, we use the leftover dynamic server de-
fined for the blind multiplexing (see Eq. (2.18) in Section 2.3.3). Since the
calculation of the above cases involve many new parameters, introduced by
the FIFO leftover dynamic servers and Hölder inequality, we do not present
the calculation in this thesis. We may also need to find a smarter method to
represent the problem. We leave it as a good clue for future work.

128

Chapter 6

Scaling Element for

Unreliable Links with

Retransmissions

A very tough challenge for network calculus is found in applying it in those
network scenarios, where links (or servers) may be unreliable and some pack-
ets are lost. This actually shatters network calculus in one of its foundations
which is the assumption of a lossless system operation. Yet, the key of our
approach in dealing with such losses lies in the stochastic data scaling ele-
ment, and the simple realization that loss is just a specific flow transforma-
tion. To make things even more compounded, unreliable links usually employ
retransmission-based loss recovery schemes, which produces a feedback cy-
cle between in- and output – the main difficult issue for the analysis in this
chapter.

There is a set of previous research of network calculus that deal with
the lossy systems, but only a little really tried to solve the retransmission
problem (see the summary in Section 2.4) and the methods therein used are
very inflexible. In this chapter we improve the modeling flexibility using
the stochastic (sample path) scaling element and provide a two-step proce-
dure to derive the stochastic performance bounds under the influence of loss
and retransmissions-based compensation. We specifically make the following
contributions:

• We set up a stochastic network calculus model for an unreliable link
employing retransmissions for loss recovery.

129

6. Scaling Element for Unreliable Links with Retransmissions

• For a specific loss process, the binary symmetric channel, we determine
a tight stochastic scaling curve based on a Martingale argument.

• We solve the feedback cycle problem under the realistic assumption of
a limited number of retransmissions.

These results are from the joint work with J. Schmitt and F. Ciucu [150, 146].
Next we first present the model for an unreliable link with retransmission-

based loss recovery, using our stochastic data scaling model (Section 6.1).
Then we analyze it and provide the end-to-end performance bounds by using
an advanced construction of scaling curve and accounting for the feedback
loop for sample paths (Section 6.2). After that we numerically validate the
analytical results (Section 6.3).

6.1 A Model of an Unreliable Link with Retrans-

missions

In this section, we propose a model for an unreliable link that employs a
retransmission scheme to recover from data loss due to channel impairments.
The model builds upon the novel concept of stochastic scaling as introduced
in the previous chapters and the existing results of network calculus.

Data loss is a frequent event when transmitting data over an unreliable
link. In order to compensate for data loss, many protocols and methods em-
ploy retransmission schemes. The data loss process can be captured in a net-
work calculus model by a scaling process S and its stochastic scaling curve

S
ε

as elaborated in Section 3.1. Before retransmitting a lost packet, we as-
sume that the sender must wait to be certain that the packet has really been
lost. Thus retransmitted packets will experience a certain delay. To cover typ-
ical retransmission schemes we model two mechanisms to detect such a loss
event: a local countdown timer at the sender if no positive acknowledgment
is received, and, optionally, an explicit negative acknowledgment from the
receiver. Thus the delay experienced before a retransmission is performed
is upper bounded by the countdown timer, but may be lower if a negative
acknowledgment is received before timer expiration. We further assume the
countdown timer to be set to a fixed value. Clearly, loss detection may not be
perfect resulting in duplicate data packets. We assume that duplicate pack-
ets can be identified by the receiver (e.g., through using sequence number).
In any case, due to the countdown timer or a negative acknowledgement re-
ceived at the sender side, we can abstractly model the retransmission as a data
flow being fed back to the sender.

130

6.1. A Model of an Unreliable Link with Retransmissions

Unreliable Link:

Stochastic Scaling

Figure 6.1: Network calculus model of an unreliable link with retransmis-
sions.

Concretely, modeling the retransmissions of the lost data units consists
of 1) a feedback loop of the lost data units to the entrance of the server, 2)
a feedback delay each retransmitted packet potentially experiences, and 3)
a deterministic strict service curve β for characterizing the service capacity
available to the aggregate of original and retransmitted units. We point out
that the deterministic nature of the service curve precludes accounting for the
possibly time-varying nature of the unreliable channel’s capacity; while such
more realistic scenarios can be captured using a stochastic service curve (see,
e.g., [62]), we consider the simplified deterministic model for ease of expo-
sition. Or in other words, we can firstly lay our focus onto the sample path
modeling and then apply the Boole’s inequality argument like shown in Sec-
tion 3.4. Moreover, to model the feedback delay, we know that the waiting
time of either the countdown timer or the potential negative acknowledge-
ment is bounded by a maximum feedback delay denoted as W . Thus, the
delay process has a service curve δW (see Section 2.2.2), with W ≥ 0 and
δW (t) = 0 if t ≤ W , otherwise δW (t) = ∞. Note that retransmitted data
units may have to be retransmitted again due to new loss, resulting in further
retransmitted flows. We make the assumption, which holds true in most prac-
tical implementations, that the number of retransmissions is limited to some
fixed value. This model of an unreliable link with retransmission-based loss
recovery is depicted in Figure 6.1.

We distinguish between different retransmission flows, those consisting
of data units being retransmitted once, twice, and so on. Correspondingly, we
represent all flows in the system with their arrival curvesα(0), α(1), · · · , α(N),
where α(0) = α and N is the limit of the number of retransmissions for any

data unit. Denote by Si the scaling process of flow i − 1 and by S
εi
i the cor-

responding scaling envelope, where i ≥ 1. Note that the Si’s form a partition
of the overall scaling process S and

∑N
i=1 Si = S. Here, εi is the violation

probability of Si. We also make the assumption that retransmission flow i,

131

6. Scaling Element for Unreliable Links with Retransmissions

consisting of the data units retransmitted for i times, has lower priority than
retransmission flow i+1, for all i = 1, . . . , N−1. One instance of this policy
is exemplified by a simple stop-and-wait protocol. More generally, any ARQ
protocol that sends data units with lower sequence numbers first satisfies this
assumption, for example, TCP does, too.

6.2 End-to-End Performance Bounds

In this section we first model the lossy channel, and derive the arrival curves
of the original and retransmitted flows, then we provide the stochastic perfor-
mance bounds.

6.2.1 Modeling a Binary Symmetric Channel (BSC)

To exemplify how the loss process at an unreliable link can be captured with
stochastic scaling, we consider a binary symmetric channel (BSC) model;
more complicated channel models can also be considered (see Section 3.4.1
and 4.1.1, or [49] for loss processes defined as Markov arrival processes).
For the ease of presentation, and also to deal with inherent technical compli-
cations due to modeling retransmissions, we mainly focus on the BSC model.

We model the BSC with the scaling process

S(b) = X1 +X2 + · · ·+Xb , (6.1)

where X ′
is ∈ {0, 1} are i.i.d. Bernoulli random variables with parameter p,

i.e., the crossover probability of the BSC. The next theorem gives the stochas-
tic scaling curve for the BSC, which will be used later. We point out that the
stochastic scaling curve specifically for BSC is a more advanced construction
than the one we showed with Lemma 2 in Section 3.4.1.

Theorem 11. (Stochastic Scaling Curve for BSC) Consider the scaling pro-

cess S(b) for BSC from Eq. (6.1). Then the function

S
ε
(b) = pb+ 1− ε . (6.2)

is a stochastic scaling curve for BSC, in the sense of Definition 15.

Proof. Let us first construct the process

T (c) := S(c) − S
ε
(c) + 1 , ∀c .

132

6.2. End-to-End Performance Bounds

Construct also the filtration Fc = σ(X1, X2, . . . , Xc) capturing the partial
histories of the process Xc. Then we have for some fixed c:

E [T (c+ 1) | Fc] = E [T (c) +Xc+1 − p | Fc]

= T (c) + E [Xc+1 − p]

= T (c) ,

and thus T (c) is a martingale. In the second line we used that T (c) is Fc-
measurable, and that Xc+1 is independent of Fc. The last line follows since
Xc+1 is a Bernoulli r.v. with parameter p.

Since T (c) is a martingale we can write for all b ≥ 0:

Pr

(

sup
0≤a≤b

{

S(b)− S(a)− S
ε
(b− a)

}

≥ 0

)

= Pr

(

sup
0≤c≤b

T (c) ≥ 1

)

≤ E [T (b)]

= ε .

In the second line we used the stationarity of the Bernoulli process. In the
third line we used Doob’s maximal inequality applied to the martingale T (c),
i.e., for a martingaleT (c) and each x > 0we havePr

(
sup0≤c≤b T (c) ≥ x

)
≤

E[T (b)]
x (see Billingsley [16], p. 466).

This result will be used to compute the arrival curves of the retransmission
flows.

6.2.2 Arrival Curves for Retransmission Flows

General Problem Statement

Under the general assumptions of Section 6.1, we can use existing network
calculus results on priority multiplexing (see Eq. (2.9)) to obtain the following
formulations for the service and arrival curves of each retransmission flow.
Under the assumption that the node offers a strict service curve β, using the
output bound of Theorem 1 in Section 2.3.3 and Corollary 5, each flow i is
offered a service curve β(i) defined as follows

β(0) = [β −
N∑

k=1

α(k)]+ , α(0) = α

133

6. Scaling Element for Unreliable Links with Retransmissions

β(1) = [β −
N∑

k=2

α(k)]+ , α(1) = S
ε1
1 (α(0) ⊘ β(0))⊘ δW

β(2) = [β −
N∑

k=3

α(k)]+ , α(2) = S
ε2
2 (α(1) ⊘ β(1))⊘ δW

· · · · · ·
β(N) = β , α(N) = S

εN
N (α(N−1) ⊘ β(N−1))⊘ δW .

We point out that, with a small loss of generality, we ignored packetization
effects in the expressions of β(i)’s (see Section 2.2.3). We can further simplify
and remove the dependency of the α(i)’s and the β(i−1)’s as follows

α(0) = α

α(1) = S
ε1
1

(

α(0) ⊘ [β − α(1) − α(2) − · · · − α(N)]+
)

⊘ δW

α(2) = S
ε2
2

(

α(1) ⊘ [β − α(2) − α(3) − · · · − α(N)]+
)

⊘ δW

· · ·
α(N) = S

εN
N

(

α(N−1) ⊘ [β − α(N)]+
)

⊘ δW .

From these equations, it is apparent that the different arrival flows are depen-
dent on each other and thus a probabilistic interpretation of the curves would
need to take into account the corresponding correlations. However, since,
in the first step, we argue purely deterministically this becomes no technical
problem. The deterministic argument is under the assumption that we are on a
sample path of the system for which the scaling curves are not violated. Only
in the second step, in Section 6.2.3, when we evaluate the probability of this
event, we reason stochastically, yet then the correlations between the arrival
flows pose no technical problem any more.

Our goal next is to find explicit formulations of α(1), α(2), · · · , α(N)

using this recursive set of equations (in the α(i)’s only, as the β(i)’s were
just removed). We use a fixed-point approach to resolve the self-dependency
issue of the α(i)’s; see also Figure 6.2 for a graphical representation of the
recursion system. Thereby we interpret our equation system as a mapping

T (~αn) = ~αn+1 ,

where ~αn = (α
(1)
n , α

(2)
n , · · · , α(N)

n). To find a fixed-point for system T we
are going to rely on further assumptions on the shape of the functions αi’s, as
elaborated next.

134

6.2. End-to-End Performance Bounds

N N

Figure 6.2: Self-dependent equation system.

Fixed-Point Calculation

Next we tackle the fixed-point problem just described by making further as-
sumptions to instantiate a form of the problem that can actually be solved.
The assumptions are simplifying but at the same time they are realistic and
some of them are actually without loss of generality.

Further Assumptions

We assume an affine arrival curve (a token bucket) for the original input
flow α = γr,b (i.e., α(t) = rt + b), and a rate-latency function as the strict
service curve β = βR,T (i.e., β(t) = R[t−T]+). The feedback is assumed to
be delayed, so we use a positive W for the service curve δW of the feedback
delay process. With respect to the scaling curves, we set ∀i = 1, . . . , N :

S
εi
i (b) = S

ε
(b) = Cb + B. This means all the scaling processes Si’s of the

retransmission flows can be bounded by the same stochastic scaling curve;
this holds true for any overall scaling process that is i.i.d. (e.g., the BSC).
For ease of exposition, we also assume homogeneity of the scaling violation
probabilities εi’s. Note further that under the BSC, C andB can be calculated
using Eq. (6.2), and should satisfy B ≥ 0 and 0 ≤ C < 1. The latter
condition is necessary for the convergence of T , since otherwise the scaling
would not act as a contractor but as an expander such that αn would diverge
to infinity. We point out that the analysis of more complex arrival, service,
and scaling curves would follow a similar line of argument, and is left for
future work.

For illustrative purposes, we demonstrate the derivation of the arrival
curves of retransmission flows for two cases: a single retransmission case
and the general case of N retransmissions. We focus especially on the first
case, as the second one can be treated as a generalization by using the same
method.

(1) N = 1 ↔ one retransmission flow

We know that

α(0) = α ,

135

6. Scaling Element for Unreliable Links with Retransmissions

Figure 6.3: Illustration of the calculation for one retransmission flow.

α(1) = S
ε
(

α(0) ⊘ β(0)
)

⊘ δW = S
ε
(

α⊘
[

β − α(1)
]+
)

⊘ δW .

It is to be checked whether the mapping for α(1) is convergent and what is

the fixed point of the mapping α(1)
∞ . Put differently, if we set the initial input

of α(1) as α(1)
1 = γCr,b1 , where b1 is the variable of burst needed to solve the

fix-point equations, the task is to check whether there is a convergent limit b∞
for b1 and what is its value. Note that the rate of α(1) is Cr because any other
rate of α(1) will be limited to the rate of α (i.e., r) after the deconvolution

α ⊘ [β − α(1)]+, and also after the invocation of the scaling curve S
ε
(b) =

Cb +B.

Next, we calculate the formulation α(1) = S
ε (
α⊘ [β − α(1)]+

)
⊘ δW

step by step until we achieve enough information to assess its convergence
and are able to calculate the fixed-point value b∞ of b1, b2, . . . This process
is depicted in Figure 6.3 and explained in the following steps:

1. Calculate curve
[

β − α
(1)
1

]+

= βR−Cr,T1 , where T1 is the latency to be

determined. From CrT1 + b1 = R(T1 − T) we have

T1 =
RT + b1
R− Cr

.

2. Calculate α ⊘
[

β − α
(1)
1

]+

. Draw a line at point (−T1, b) with rate equal

to the rate of the arrival curve α, which is r. Now calculate the burst of the

136

6.2. End-to-End Performance Bounds

above curve - b′2 as
b′2 = rT1 + b .

3. At last, calculate α(1)
2 = S

ε
(

α⊘
[

β − α
(1)
1

]+
)

⊘ δW as α(1)
2 = γCr,b2

with
b2 = Cb′2 +B + CrW = C(rT1 + b) +B + CrW .

Repeating step 1, 2 and 3 for α(1)
2 we obtain

T2 =
RT + b2
R − Cr

,

b3 = C(rT2 + b) +B + CrW .

Then we repeat this calculation again to obtain b4 = C(rT3+ b)+B+CrW
and so on. That means the convergence of α(1) depends on the sequence of
T1, T2, T3, . . . We can write this sequence for integer j > 1 as follows:

T1 =
RT + b1
R− Cr

, · · ·

Tj =
Cr

R− Cr
Tj−1 +

RT + Cb+B + CrW

R− Cr
.

At the same time, we have

bj = (R− Cr)Tj −RT .

For the deconvolution α ⊘
[
β − α(1)

]+
to exist, the following condition

must hold

lim
t→∞

[
β − α(1)

]+
(t)

t
≥ lim

t→∞

α(t)

t
=⇒ R− Cr ≥ r =⇒ Cr

R − Cr
≤ C < 1 .

This is in fact a stability condition for the system. In particular, R > r + Cr
means that the long-term capacity of the server can satisfy the long-term
needs of the original and the retransmitted flow (recall also our previous as-
sumption that C < 1 to guarantee stability). Applying the stability condition
to

Tj =
Cr

R− Cr
Tj−1 +

RT + Cb+B + CrW

R− Cr
,

we obtain that the sequence of Tj is convergent, i.e., there is a fixed point T∞

137

6. Scaling Element for Unreliable Links with Retransmissions

with

T∞ =
RT + Cb +B + CrW

R− 2Cr
.

Finally, we can calculate the arrival curve of the retransmission flow as

α(1) = γCr,b∞ , where

b∞ = (R − Cr)T∞ −RT .

(2) General N ↔ N retransmission flows

Because the calculation process for N ≥ 2 is very similar to N = 1 (the
only difference is that now we face an equation system due toα(1), . . . , α(N)),
we ignore the computational details and provide the results directly. First, we
assume the following condition

R >
(
1 + C + C2 + · · ·+ CN

)
r =

1− CN+1

1− C
r (6.3)

for the system’s stability. This inequality can be used as a tool to adjust the
server capacity, the input flow rate or maximum number of retransmissions.

If we denote the convergent latency of
[
β − α(j) − α(j+1) − · · · − α(N)

]+

with Tj,∞, for all 1 ≤ j ≤ N , then the fixed-point problem reduces to solving
the following equation system

A× (T1,∞, T2,∞, . . . , Tj,∞, . . . , TN,∞)t = φ ,where

A =














R− 2r
N∑

i=1

Ci −r
N∑

i=2

Ci . . . −r
N∑

i=N

Ci

−r
N∑

i=2

Ci R − 2r
N∑

i=2

Ci . . . −r
N∑

i=N

Ci

...
...

. . .
...

−r
N∑

i=N

Ci −r
N∑

i=N

Ci . . . R− 2r
N∑

i=N

Ci














,

138

6.2. End-to-End Performance Bounds

φ =















RT + b
N∑

i=1

Ci +B ·
N−1∑

p=0

p∑

q=0
Cq + rW ·∑N

i=1 iC
i

RT + b
N∑

i=2

Ci +B ·
N−1∑

p=1

p∑

q=0
Cq + rW ·∑N

i=2 iC
i

...

RT + b
N∑

i=N

Ci +B ·
N−1∑

p=N−1

p∑

q=0
Cq + rW ·∑N

i=N iCi















.

We next use Cramer’s Rule to derive

T1,∞ =
det(A1)

det(A)
, T2,∞ =

det(A2)

det(A)
, · · · , TN,∞ =

det(AN)

det(A)
,

where Ai,1≤i≤N is the matrix A with the ith column of A replaced by φ. If
all roots are positive, then a fixed point exists. In this case, the arrival curves
of all N retransmission flows are given as follows

α(j) = γCjr,bj,∞ , where

bj,∞ = Cjr(Tj,∞ + Tj−1,∞ + · · ·+ T1,∞)

+Cjb+ (Cj−1 + · · ·+ C + 1)B + jCjrW .

6.2.3 Performance Bounds

In the previous subsection, we have shown a fixed-point approach to derive
the arrival curves for each retransmission flowα(i) and, consequently, also the
service curves β(i) as seen by each of these flows. As discussed above, the
arguments were given under a deterministic interpretation of arrival, service,
and scaling curves. However, for the derivation of probabilistic performance
bounds (e.g., the delay of a data unit through the unreliable link), we now need
to take into account the stochastic nature of the unreliable link and therefore
of the underlying scaling process.

Firstly, let us assume that there exists a sample-path over which the scal-
ing functions of all the flows, original and retransmissions, do not violate their

sample-path stochastic scaling curves S
ε

i ’s.If this assumption applies, accord-
ing to the calculation described in the previous section, we can firstly derive
the arrival curve for the aggregate arrivals as

∑N
i=0 α

(i) (see Section 2.2.1).
And the service curve for the aggregate arrivals is β. Now we obtain the delay

139

6. Scaling Element for Unreliable Links with Retransmissions

bound

∀t : d(t) ≤ h

(
N∑

i=0

α(i), β

)

.

Note that this delay bound excludes the direct delay contributions of the feed-
back for retransmitted packets, though it takes the feedback loops burstiness
increase effect into account (see also Section 6.3). These delay contributions
can simply be added according to the number of necessary retransmissions
and the maximum feedback delay, but are omitted in the following due to
their rather uninteresting nature.

Secondly, we need to calculate the violation probability of the above
sample-path assumption. As discussed above, each flow i is subject to a scal-
ing process Si, and all Si’s form a partition of the overall scaling process S.
Given an i.i.d. overall scaling process S (e.g., the BSC), all Si’s are i.i.d. as
well and mutually independent. A probabilitic delay bound can be computed
by calculating the probability of the sample-path event that the stochastic
scaling curves are not violated as follows

Pr

(

d(t) ≤ h

(
N∑

i=0

α(i), β

))

≥ Pr

(
N⋂

i=1

{

S
ε

inot violated
}
)

=

N∏

i=1

Pr
(

S
ε

i not violated
)

≥ (1− ε)
N
, (6.4)

by invoking the statistical independence in the second line. Note that, if the
Si’s were not i.i.d. , we could still use the union bound to compute the viola-
tion probability (of course, resulting in a more conservative bound).

Similar reasoning can be applied to compute the probabilistic backlog
bound for all of the flows:

Pr
(

b(t) ≤ v
(

α(0) + α(1) + · · ·+ α(i), β
))

≥ (1− ε)N ,

with statistical independence assumptions. Note, given a violation probability
ε of the stochastic delay bound, we can either use (1−ε)N = 1−ε assuming
the homogeneous link quality among the flows (original and retransmitted),
or numerically optimize the bound value subject to that

∏N
i=1(1−εi) = 1−ε

(independent case), and more generally, 1 −
∑N

i=1 εi = 1 − ε (discussed in
Section 3.4.2).

140

6.3. Numerical Evaluation

6.3 Numerical Evaluation

In order to illustrate the application of the model, let us go through a numer-
ical example in this section. Before the calculation, we state some necessary
assumptions.

Assumptions: Consider the scaling process S to be a BSC with loss prob-

ability p varying from 0.1 to 0.9 (from normal state to channel collapse). The

arrival curve of the input flow is α = γr,b = γ0.1,3. The service curve is

β = βR,T = β1,3. The service curve of the feedback delay is δW = δ8. The

violation probability of the sample-path stochastic scaling curve is ε = 0.001.

The value of W will later be varied from 0 to 40, in order to illustrate the im-

pact of the feedback delay.

Target of Calculations: We compute probabilistic delay bounds with dif-

ferent loss probabilities and for different number of retransmissions N =
1, 2, 3, as well as with varying feedback delays.

First, in order to illustrate how to derive the arrival curves for all the re-
transmission flows, let us pick N = 2 as an example. From Section 6.2.1 we
know that a sample-path stochastic scaling curve for a BSC with parameter p
can be calculated as in Eq. (6.2). Let C = p and B = 1 − ε. We can now
use the results from Section 6.2.2 to derive the formulas of arrival curves α(1)

and α(2) for the two retransmission flows. As a result, we derive the arrival
curves α(1), α(2) and the leftover service curves β(1), β(2). For example,
for p = 0.1, these are depicted in Figure 6.4 together with horizontal lines
representing the delay bounds for each retransmission flow.

Comparing the rates of α and α(1), we observe that the rate of α(1) (i.e.,
Cr) is much smaller than the rate of α (i.e., r); this is because α(1) is the
retransmission flow caused by data loss and the probability of data loss is not
too high, which means that the effect of the retransmission flow is rather weak
(i.e., C << 1). Consequently, the retransmission flow for α(1), which is α(2),
is even weaker. Next we observe from Figure 6.4 that b > b1 > b2. This is
intuitive, since b as the original flow’s parameter is expected to be greater than
b1 and b2.

With the computed values of α(1) and α(2) we can next calculate the ar-
rival curve for the aggregate flows as

∑2
i=0 α

(i) = γ0.111,5.59. And using
Eq. (6.4) we can now compute the probabilistic delay bound with two re-
transmissions (recall that N = 2)

Pr

(

d(t) ≤ h

(
2∑

i=0

α(i), β

)

= 8.5902

)

≥ (1− ε)2 = 0.9980 .

141

6. Scaling Element for Unreliable Links with Retransmissions

0 5 10 15 20
0

5

10

15

20

Time

D
a
ta

Arrival Curve of Original Flow

Left−over Service Curve of Original Flow

Arrival Curve of Retransmission Flow (1)

Left−over Service Curve of Retransmission Flow (1)

Arrival Curve of Retransmission Flow (2)

Left−over Service Curve of Retransmission Flow (2)

α
(0)

=γ
0.1, 3

β
(0)

=β
0.989, 5.65

β
(1)

=β
0.999, 4.16

β
(2)

=β
1, 3

α
(1)

=γ
0.01, 1.44

α
(2)

=γ
0.001, 1.16

Figure 6.4: Arrival, service curves, and delay bounds.

Next, we show the delay bounds forN = 1, 2, 3 and p = 0.1, 0.2, · · · , 0.9
in Figure 6.5. In the figure, for each N , we plot a curve for p from 0.1 to 0.9.
The delay bounds are expectedly increasing in N and p. Clearly, the more
data is lost and the higher reliability the communication requires (higherN),
the higher is the delay. Most interestingly, the figure shows forN = 3 a steep
rise for increasing loss probabilities, whereas forN = 1, 2 the bounds are rel-
atively insensitive to the loss probability. Hence, we encounter an interesting
phase transition phenomenon for the impact of the number of retransmissions
on the performance bounds, i.e., there exists a threshold value for N above
which the performance bounds blow up. As discussed in Section 6.2.3, the
feedback delay is excluded from the total delay bound, such that this blow-up
does not directly and trivially relate to the maximum feedback delay but is
due to queueing effects only. From the stability condition Eq. (6.3), we can
clearly derive a maximal N such that the node is still in stable state. A po-
tential usage of this knowledge could be to dynamically adapt the maximum
number of retransmissions per data unit to control the trade-off between delay
and reliability according to the current utilization and loss characteristics of a
lossy link.

In Figure 6.6, we show the impact of the maximum feedback delay on
the delay bounds for N = 1, 2, 3 and W = 0, 1, · · · , 40. The delay bounds
are increasing in the maximum feedback delay for all the three cases. Al-
though we have excluded the direct contribution of the feedback delay, it still
increases the possibility to cumulate burstiness in the retransmitted flow at
the server. Clearly, this cumulated burstiness eventually increases the delay

142

6.3. Numerical Evaluation

0.1 0.3 0.5 0.7 0.9
0

10

20

30

40

Loss Probability

D
e
la

y
B

o
u
n
d

One Retransmission Flow

Two Retransmission Flows

Three Retransmission Flows

Figure 6.5: Delay bounds with retransmission attempts i (i = 1, 2, 3).

0 10 20 30 40
5

15

25

35

Maximum Feedback Delay

D
e
la

y
B

o
u
n
d

One Retransmission Flow

Two Retransmission Flows

Three Retransmission Flows

Figure 6.6: Delay bounds with changing maximum feedback delay (loss
probability p = 0.7).

143

6. Scaling Element for Unreliable Links with Retransmissions

bound. The higher the maximum retransmission number, the more often a re-
transmitted packet may experience the feedback delay, and thus, the burstier
the aggregate flow becomes. This is illustrated in the Figure 6.6 by the in-
creasing slopes for N = 1, 2, 3.

In this chapter, we made a step forward on the way to model unreliable
networks using the stochastic network calculus. Based on the stochastic data
scaling elements we showed how to model and analyze an unreliable link
that employs a retransmission-based loss recovery. Solving this model in-
volved a fixed-point analysis yielding probabilistic performance bounds. In
the numerical example, we illustrated how to apply the theoretical results and
demonstrated the model’s capabilities to provide interesting insights into the
system behavior. In particular, we showed that even at small utilizations, a
relatively small number of retransmission attempts already lends itself to a
delay bound’s blow-up. This provides incentives for protocols to dynami-
cally adapt the maximum number of retransmissions. Moreover, our model
can also reveal the quantitative impact of the feedback delay on the delay
bound of the aggregate flow. An interesting and desirable future work along
the way in this chapter is to investigate whether our technique to analyze sin-
gle unreliable links and the concatenation principle from network calculus
can be combined to analyze unreliable networks.

144

Chapter 7

Scaling Element for Variable

Length Packet

Transmissions

The scaling element models we introduced to this end have a limitation: they
scale the flow only at the granularity of identical length data units (bits or
packets). This is quite restrictive as many networks use variable-length pack-
ets and information, and events like sending and receiving cannot be observed
at the bit-level. In this paper, we therefore propose a new scaling element
which respects flows as a sequence of (variable-length) packets rather than
just bits. The critical challenge in defining such a scaling element at the
packet-level is that it should preserve the convolution-form expression of
multi-node networks. To ease the exposure we again focus on the abstract
but widely applicable flow transformation operation: the demultiplexing of
packets, i.e. to thin a flow of packets by selecting only some of them, e.g. due
to network operations such as routing, load balancing, transcoding, or simply
loss of packets.

We are, of course not the first to treat the case of variable-length packets
(though, to the best of our knowledge we are the first to take this into account
under flow transformations). In particular, the packetizer element [95, 36]
has been introduced in network calculus to deal with flows of variable-length
packets. [100, 80] have extended it to the stochastic settings. [100] mod-
els heavy-tailed arrivals with packet distributions. [80] reveals the inherent
dependence brought by the packet process to the arrivals and services. We

145

7. Scaling Element for Variable Length Packet Transmissions

also use the packetizer but now in combination with a scaling element in
order to model flow transformations at the packet level. In Chapter 5 we
showed a novel model to understand the demultiplexing for first-in-first-out
(FIFO) servers and to compute tighter end-to-end delay bounds. Yet, for the
n-node network to preserve the convolution-form the computation of the per-
formance measures turned out to be hard. Therefore, in this chapter, we com-
mute the packet-level scaling element and the dynamic server (as proposed
for the bit level in Chapter 4), in order to provide a tractable end-to-end delay
bound computation. We generalize the results from Chapter 4 by introduc-
ing the so-called packet scaling element which scales on each variable length
packet. The results of this chapter are from the joint works with J. Schmitt
[149, 147, 148].

7.1 Modeling the Demultiplexing of Variable Len-

gth Packet Flows

In real-world the bits perhaps belong to different (variable length) packets,
and transformations happen on the whole packet instead of each bit. For the
demultiplexing example, we may simply know the routing probability of a
complete packet to one destination. To model this (packet-level) demulti-
plexing operation, we need to extend the scope of the scaling element. Yet,
before we do that, we first integrate variable length packets into the network
calculus framework. We denote the packet lengths as a sequence of positive
integer random variables l1, l2, A packet process L(n), n ≥ 1 is a cumu-
lation of these r.v. ’s, L(n) = l1 + l2 + · · ·+ ln, and ln = L(n)− L(n− 1)
with L(0) = 0. A packet flow is modeled using the definition of packetizer
([36], [95]).

Definition 19. (Packetizer) Given a packet process L(n) and an arrival pro-
cess A(t), an L-packetizer is a network element expressed by a function
PL(·) satisfying for all A(t), t ≥ 0

PL (A(t)) = L(Nt) ,

where
Nt = max {m : L(m) ≤ A(t)} . (7.1)

We say that a flow A(t) is L-packetized if A(t) = PL (A(t)) for any
t ≥ 0. So a packet flow is an L-packetized arrival process. Note, the function
PL is not restricted to a real network element with a queue, it can also be used

146

7.1. Modeling the Demultiplexing of Variable Length Packet Flows

to parse a bit flow (e.g., with marks) into packets and not change its timing.
In the rest of this chapter, we will use both meanings.

Now we consider the demultiplexing of a packet flow. We extend the
definition of the scaling element using the “L-regulated” Eq. (3.3).

Definition 20. (Packet Scaling Element) A packet scaling element consists
of an L-packetized arrival process A(t) =

∑Nt

i=1 li, a packet scaling process
X taking non-negative integer values and a scaled packetized flow defined for
all t ≥ 0 as

AX(t) =

Nt∑

i=1

liXi .

We can use the packet scaling element to model the transformation of the
packet flow, specifically, the demultiplexing case. Accordingly, liXi means
li · 1{“packet i goes to destination (1)”}, i.e., demultiplexing operates on each packet
and Xi equals either 0 or 1.

A packet flow is usually processed or served by a queueing system be-
fore or after being demultiplexed. To analyze the delay of a packet through
this system we distinguish two models. One is, after being served by each
node the output is always packets, i.e., the bits are packetized by a packetizer
PL. The other is, there is no packetizer after service, yet we observe from
the bit flow the last bit of each packet according to a packet process L. In
Chapter 3, 4 we derive the end-to-end delay bound for the bit flow under flow
transformation. The second case can be a critical challenge for that approach
(L-modulated scaling process and sampling due to L). In this chapter, we
focus on the first case and assume that the packetization is not changed along
the path. Therefore we need to define a packetized server as a bit server fol-
lowed by a packetizer PL, and denote the dynamic server of it as SL(s, t).
Given the dynamic server of the bit server S and the packet process L and
assuming that a maximum packet size lmax exists, i.e. lmax < ∞, we obtain
a possible SL,

SL(s, t) = [S(s, t)− lmax]+ . (7.2)

The proof follows using a busy time analysis.

We illustratively summarize the network elements in Figure 7.1. Since we
observe a packetized flow, it is then apparent to pursue the delay of the pack-
ets. Now we slightly adjust the virtual “bit” delay definition (see Eq. (2.3)) to
the packet delay.

Definition 21. (Packet Delay) A process W (t) is called packet delay (pro-

147

7. Scaling Element for Variable Length Packet Transmissions

Figure 7.1: Network elements: (a) dynamic server, (b) packetizer, (c) packet
scaling element, (d) packetized server.

cess), if for all t ≥ 0

W (t) = inf
{
d ≥ 0 : PL (A(t)) ≤ PL (D(t+ d))

}
.

Here we assume the service is FIFO. The packet delay is a virtual delay
that would be experienced by a packet which arrives at time t. Next, we
provide the derivation of the end-to-end packet delay bounds.

7.2 Delay Bounds of a Network with Flow De-

multiplexing

In this section, we compute the end-to-end packet delay for networks with
multiple demultiplexers. According the results stated in previous chapters,
there are two ways to compute the end-to-end delay: (1) commute service and
scaling elements (see also Section 3.1 and 4.2), (2) get the leftover service for
the flow of interest if the server uses FIFO scheduling (see also Section 5.2).
In this chapter, we use the first, i.e., we repeatedly move all the packet scaling
elements in front of the packetized servers and obtain the convolution-form
of the network. Then we calculate the end-to-end delay bounds. Here, we
have two choices: one is to “normalize” the packet flow as well as the bitwise
service with packet size, so that the observation is directly on each packet
irrespective of its size (→ Section 7.2.1); the other is to use the definition
of packet delay (Definition 21) and derive the delay bound directly through
observing the original bit flow with packetizers (→ Section 7.2.2). For the
packet flow we assume that the packet lengths li’s are i.i.d. with lmax < ∞.
In fact, this assumption can be justified in many real-world applications with
heterogeneous, large-scale, and high degree of multiplexing environment.

148

7.2. Delay Bounds of a Network with Flow Demultiplexing

...

Figure 7.2: A network model consisting of packetized arrivals, services and
packet scaling elements.

7.2.1 Observing the Packet Flow

Consider Figure 7.2, we lift our observation of the flow directly from the bit
level to the packet level. This means we view each packet as a single data unit
ignoring its size. Then we re-express the service this packet receives. After
doing so we can derive the end-to-end packet delay bound directly using the
calculation from Chapter 4.

Consider the arrivals consist of packets whose arrival times are defined as
the arrival time of the last bit, we can model these time jumps with a counting
process and together with a packet size distribution, model the arrival process

as a compound process -A(t) =
∑N(t)

i=1 li, where {N(t), t ≥ 0} is the count-
ing process, i.e., the number of arriving packets in time t, and li is the i-th
packet size. This seems to be a slightly different description of a packetized
flow, because here we do not assume a packetizer element in the network. Yet,
the packetized process resulting from packetizer is also covered by this defi-
nition. Consequently, we obtain an arrival process of packets - {N(t), t ≥ 0}.
We call this approach “normalization” of the bit flow by the packet sizes.

Such a sequence of packets will be served by a service element described
by the bitwise service capacity together with a packetizer. How much service
capacity does a packet receive? To answer this question is not very hard.
For example, assume that a packet with length l will be served by a server
with constant service capacity C bits/s, so the service rate for this packet is
C/l packets/s. This is the “normalization” on the service side. The constant
capacity server is transformed into a variable capacity server. We write it as
Snorm(s, t) =

∑t
i=s c(i) for all 0 ≤ s ≤ t. Here all the c(i)’s are the time

varying capacities of serving a packet at time i.

In Chapter 4, we derive the end-to-end delay bounds for a flow with iden-
tically sized data units. The derivation is based on the MGF bounds of the
arrivals and the services and expresses a network with flow transformations
in a convolution-form. Therein, the servers are assumed to have constant
MGF bounds. However, to use the same derivation is quite challenging, be-
cause now on one hand, the servers have variable capacities and to know their
MGF bounds is hard; on the other hand, they are “normalized” by the same

149

7. Scaling Element for Variable Length Packet Transmissions

packet process and hence dependent of each other.
To obtain the MGF of the dynamic server we can firstly express the inter-

service time. Then we use the (inverse) Laplace transform of the convolution
of inter-arrival times and packet size distributions to compute the p.d.f. of
the inter-service time. Thirdly, we use renewal theory to obtain the p.d.f. of
the counting process of the service. At last, the MGF follows by its defini-
tion. About the dependency, Hölder inequality might be a solution, but many
parameters are introduced (see Eq. (2.13)). This approach lays its focus on
the accuracy of the expressiveness, yet, loses the analytical tractability. In
this section, we just want to provide a method to calculate the end-to-end
delay for variable-length packet flows that follows closely the approach in
Chapter 4 and then compare it against the more sophisticated method using
the packet scaling element. Assume that the bit-wise capacity S(t) is offered
work-conserving with variant rates and let S(t) ≥ Ct for any t ≥ 0 such
that MGF bound MS(t)(−θ) ≤ e−θCt for θ > 0, then we can vaguely write
c(i) ≥ C/lx, where lx means either some packet length or ∞. We assume the
packet size has a limit, i.e., lx ≤ lmax. Clearly, c(i) ≥ C/lmax. We obtain a
lower bound of this normalized dynamic server Snorm(s, t) ≥ C

lmax
(t − s).

Now, we represent the dynamic server as a server with the normalized capac-
ity C/lmax, which, at the same time, solves the above problems. Consider the
network in Figure 7.2 again. We assume the compound process as the arrivals
instead of using packetizer. We also assume MSj(t)(−θ) ≤ e−θCjt, j ≥ 1
at each bit server. The end-to-end delay has the following stochastic bound
(refer to Eq. (4.10))

Pr(W > d) ≤ Knbd .

We point out, the only difference between this result and Theorem 9 in Chap-
ter 4 is that the MGF bound of each service is

MSnorm
i (s,t)(−θ) ≤ e−θ

Ci
lmax

(t−s) . (7.3)

We also point out, when we do the “normalization” to the service, whether
there exists a real packetizer component or not does not change the packet
delay analysis, because only after the last bit of a packet is served by the bit-
wise server, the service of this packet is considered to be finished, this is just
as if there was a packetizer virtually.

7.2.2 Observing the Original Bit Flow with Packetizers

In the previous subsection, we provided an approach to calculate end-to-end
delay bounds for variable-lengths packet flows under flow demultiplexing

150

7.2. Delay Bounds of a Network with Flow Demultiplexing

Figure 7.3: Commutation of packetized service and packet scaling.

which observes a flow on the packet-level rather than the bit level. Now
we directly observe the flow on the bit level. We know that, when deriving
the end-to-end delay bound we should avoid summing up the delay bounds
node-by-node, but rather use the “pay burst only once” principle. To do so,
we express the network in convolution-form through moving the scaling ele-
ments between two servers to the front. The challenge now is that the scaling
element is not at the bit level anymore. We provide the following lemma to
commute the service and scaling element at packet-level, which is instrumen-
tal to the derivation of end-to-end delay bounds.

Lemma 8. (Commutation of Packet Scaling Element and Dynamic Server)

Consider system (a) and (b) with packetized arrivals A(t) = PL(A(t)) in

Figure 7.3. We define TL(s, t) :=
∑Nt

i=Ms+1 liXi as the exact dynamic server

in (b), where A(s) =
∑Ms

i=1 li, A(s) + SL(s, t) =
∑Nt

i=1 li. If A, S, X, and

L are independent, then for all t ≥ 0, the departures satisfy

F (t) ≤ EX(t) .

Proof. Because TL is an exact dynamic server, we have

F (t) = inf
0≤s≤t

{
AX(s) + TL(s, t)

}

= inf
0≤s≤t

{
Ms∑

i=1

liXi +

Nt∑

i=Ms+1

liXi

}

= inf
0≤s≤t

Nt∑

i=1

liXi,where A(s) + SL(s, t) =

Nt∑

i=1

li

=

(

inf
0≤s≤t

Nt∑

i=1

li

)X

151

7. Scaling Element for Variable Length Packet Transmissions

=

(

inf
0≤s≤t

{
A(s) + SL(s, t)

}
)X

≤ EX(t) .

In the fourth line we can use a proof by contradiction.

Through this lemma, we see that there are less departures for the trans-
formed system than in the original system, which ensures that the delays are
larger. The expression of TL looks complicated, but the meaning is clear.
∑Nt

i=Ms+1 li are the packets served from time s to t. And because after pass-
ing through a scaling element X, only a scaled part of these packets is sent
to the next server, the service they received should also be a scaled part of
the total service. After recursively using this lemma we get an expression for
the network in terms of a scaled arrival process served by a dynamic server in
convolution-form. Recall that, the arrivals have the form



· · ·
(
AX1

)X2
. .

.





Xk

(t) ,

if there are k packet scaling elements. We still denote it as A(k)(t). The alert
reader may note that, for the bit flow, the concatenation of scaling elements

can be naturally formulated as
(
AX1

)X2
(t) =

∑
∑A(t)

j=1 X1,j

i=1 X2,i, whereas
for the packet flow, this is not true any more. We point out that they are just
different in appearance but the same in essence - after each round of scaling
we choose a part of the packets (bits) from the input flow. Therefore, we
provide the delicate expression of A(k)(t), which will be used in the rest of
this section. Assume an L-packetized flow A(t) = l1 + l2 + · · · + lNt

,
where Nt is given in Eq. (7.1). We first denote the packets respectively the
number of packets in the arrivals until time t after each round of scaling as

lk,i respectively m(k)
t . Clearly for k > 0

m
(0)
t = Nt ,

m
(1)
t =

m
(0)
t∑

i=1

1{X1,i>0} ,

· · ·

m
(k)
t =

m
(k−1)
t∑

i=1

1{Xk,i>0} . (7.4)

152

7.2. Delay Bounds of a Network with Flow Demultiplexing

Further we denote A(k)(t) as

AX1(t) = l1X1,1 + · · ·+ lNt
X1,Nt

= l1,1 + · · ·+ l
1,m

(1)
t

,

(
AX1

)X2
(t) = l1,1X2,1 + · · ·+ l

1,m
(1)
t

X
2,m

(1)
t

= l2,1 + · · ·+ l
2,m

(2)
t

,

· · ·
A(k)(t) = lk,1 + · · ·+ l

k,m
(k)
t

=

m
(k−1)
t∑

i=1

lk−1,iXk,i . (7.5)

The recursion is just to do sampling in each round. We point out that this
expression is more important than the concrete values of each l to further
derive the delay bounds.

Next, we provide two useful lemmas for deriving the end-to-end delay
bounds.

Lemma 9. (Stationarity Bound) Assume that the packets li’s of a packet pro-

cess L are i.i.d. , the Xi’s of a packet scaling element X are also i.i.d. , A
and B are two L-packetized arrival processes, then for all s, t, x > 0,

Pr
(
AX(t)−BX(s) ≥ x

)
≤ Pr

(

(A(t) −B(s))
X ≥ x

)

.

Proof. On the one hand we have

Pr
(
AX(t)−BX(s) ≥ x

)

= Pr

(
Nt∑

i=1

liXi −
Ns∑

i=1

liXi ≥ x,A(t) > B(s)

)

≤ Pr

(
Nt∑

i=Ns+1

liXi ≥ x

)

.

On the other hand we know

Pr
(

(A(t) −B(s))
X ≥ x

)

= Pr

(
Nt∑

i=Ns+1

liXi−Ns
≥ x

)

.

153

7. Scaling Element for Variable Length Packet Transmissions

Xi’s and li’s are i.i.d. , which completes the proof.

Lemma 10. (Recursive MGF Bound of Scaled Process) Assume that A is an

L-packetized process, SL
i is the packetized server, li’s are i.i.d. with maximal

length lmax <∞, and Xi’s are MMOO loss processes, independent ofA and

SL
i , if we denote Vn−1(θn) as

E

[

e
θ
(

···(A(t−s)−SL
1 (s,u1))

X1−···−SL
n−1(un−2,un−1)

)

Xn−1
]

,

then for all 0 ≤ s ≤ u1 ≤ · · · ≤ un−1 ≤ t, and n > 1,

Vn−1(θn) ≤ e−θn−1S
L
n−1(un−2,un−1)Vn−2(θn−1) ,

where θi > 0, 1 ≤ i ≤ n is given in the proof.

Proof. Let θn = θ, which can be a given value. To simplify the notation, let
us assume

(

· · ·
(
A(t− s)− SL

1 (s, u1)
)X1 − · · · − SL

n−2(un−3, un−2)
)Xn−2

=

P∑

i=1

li ,

where P is a r.v. and

SL
n−1(un−2, un−1) =

Q
∑

i=1

li ,

where Q is a r.v.. Because li’s are i.i.d. and Xn−1 is a MMOO loss process,

we can see that
(
∑P

i=1 li −
∑Q

i=1 li

)Xn−1

is also an MMOO process. It

has θ-envelope Rn−1(θ) (see Eq. (2.12), also given in [36, 49]), e.g., for an
i.i.d. scaling process,

Rn−1(θ) =
1

θ
logMXn−1(logMl(θ)) .

Thus we obtain

Vn−1(θn) = E




e

θ

(

P
∑

i=1

li−
Q
∑

i=1

li

)

Xn−1



 ≤ E

[

eθRn−1(θ)(P−Q)
]

. (7.6)

To get a bound on the right term above, we first note that, because li’s are

154

7.2. Delay Bounds of a Network with Flow Demultiplexing

i.i.d. ,

M∑

P
i=Q+1 li

(θn−1) = E
[

elogMl(θn−1)(P−Q)
]

. (7.7)

We can derive a bound on this by using lmax and noting that SL
n−1 is inde-

pendent of other SL
i ’s and Xi’s. So we can easily obtain the following MGF

bound

M∑

P
Q+1 li

(θn−1) ≤ e−θn−1S
L
n−1(un−2,un−1)Vn−2(θn−1) . (7.8)

Combining Eq. (7.7) and (7.8) we have

E
[

elogMl(θn−1)(P−Q)
]

≤ e−θn−1S
L
n−1(un−2,un−1)Vn−2(θn−1) .

Using this bound in Eq. (7.6) and letting

θnRn−1(θn) = logMl(θn−1) ,

completes the proof. This equation implies every θi, 1 ≤ i ≤ n if given
θn = θ.

We now derive the end-to-end delay bound and show that it grows in O(n)
where n is the number of nodes.

Theorem 12. (End-to-end Delay Bounds in a Packet Flow Transformation

Network) Consider the network scenario from Figure 7.2 where anL-packetized

arrival process A(t) = PL(A(t)) traverses a series of stationary and (mutu-

ally) independent bit level service elements followed by an L-packetizer and

scaling elements denoted bySL
1 , S

L
2 , . . . , S

L
n and i.i.d. loss processesX1, X2,

. . . , Xn−1, respectively. Assume the packet lengths of L - li’s are i.i.d. .

Assume the MGF bounds MA(s,t)(θ) ≤ eθrA(θ)(t−s) and MSk(t)(−θ) ≤
e−θCkt, for k = 1, 2, . . . , n, and some θ > 0. We also assume that the

maximum packet length lmax < ∞. Under a stability condition, to be ex-

plicitly given in the proof, for θi > 0, i = 1, 2, . . . , n, we have the following

end-to-end steady state delay bounds for all d ≥ 0

Pr(W > d) ≤ e(
∑n

i=1 θi+θ1)lmaxKnbd , (7.9)

where the constants K and b are also given in the proof. Moreover, the ε-
quantiles scale as O(n), for ε > 0.

Proof. First we use Lemma 8 to transform the system view. To do so, we
iteratively commute the packetized server and the packet scaling element k

155

7. Scaling Element for Variable Length Packet Transmissions

times. See Figure 7.4. Since the output of the transformed system is smaller
than or equal to the original system, the delay bound of the transformed one
must be larger than or equal to the delay bound of the original one, hence, we
compute the delay bound of this transformed system.

... ...

Figure 7.4: Apply Lemma 8 for k times.

Next, fix t, d ≥ 0. For k, s ≥ 0 we define U0(s, u0) = A(s), for u0 = s,
and then recursively

Uk(s, uk) =
(
Uk−1(s, uk−1) + SL

k (uk−1, uk)
)Xk

for k ≥ 1 and uk−1 ≤ uk. We prove the theorem at the first steps by induc-
tion. For k ≥ 1 we assume the following two statements (S1) and (S2) for
the induction:

(S1) Pr(Wk(t) > d) ≤
∑

0≤s≤t

∑

s≤u1≤···≤uk−1≤t+d

Pr
(

A(k−1)(t) > Uk−1(s, uk−1) + SL
k (uk−1, t+ d)

)

,

and for fixed s and uk,

(S2)
(

A(k−1)(s) + TL
k−1 ⊗ SL

k (s, uk)
)Xk

= inf
s≤u1≤···≤uk

Uk(s, uk) ,

where TL
k is defined recursively as TL

0 (0) = 0, TL
0 (s) = ∞ for all s > 0,

and for Ns the number of packets in A(s)

TL
k (s, uk) :=

Nuk∑

i=m
(k−1)
s

lk−1,iXk,i , where

m(k−1)
s∑

i=1

lk−1,i = A(k−1)(s) ,

Nuk∑

i=1

lk−1,i = A(k−1)(s) + TL
k−1 ⊗ SL

k (s, uk) . (7.10)

First we prove the initial step of the induction, i.e., k = 1. For statement (S1),
we have

Pr(W1(t) > d) = Pr(A(t) > D(t+ d))

156

7.2. Delay Bounds of a Network with Flow Demultiplexing

≤ Pr
(
A(t) > A⊗ SL

1 (t+ d)
)

≤
∑

0≤s≤t

Pr
(
A(t) > A(s) + SL

1 (s, t+ d)
)

=
∑

0≤s≤t

Pr
(

A(0)(t) > U0(s, u0) + SL
1 (s, t+ d)

)

.

In the first line we used the definition of packet delay. In the second line we
used the definition of dynamic server. And in the third line we expanded the
convolution and used Boole’s inequality. In turn for statement (S2), we have

(

A(0)(s) + TL
0 ⊗ SL

1 (s, u1)
)X1

=

(

A(s) + inf
s≤x≤u1

{
TL
0 (s, x) + SL

1 (x, u1)
}
)X1

=
(
A(s) + SL

1 (s, u1)
)X1

= inf
s≤u1

(
A(s) + SL

1 (s, u1)
)X1

= inf
s≤u1

(
U0(s, u0) + SL

1 (u0, u1)
)X1

= inf
s≤u1

U1(s, u1) .

In the third line we used that TL
0 (0) = 0, TL

0 (s) = ∞. In the fourth line we
rewrote the third line using inf , because s and u1 are actually fixed. In the
fifth line we used the definition of U0. In the last line we used the recursive
definition of Uk.

For the induction we next assume that (S1) and (S2) hold for k ≥ 1. Then
we prove them for k + 1. Using the argument from the initial step of the
induction we can write the end-to-end delay until the k + 1th node

Pr(Wk+1(t) > d)

≤ Pr

(

A(k)(t) ≥ inf
0≤s≤t+d

{

A(k)(s) + TL
k ⊗ SL

k+1(s, t+ d)
})

≤
∑

0≤s≤t

∑

s≤uk≤t+d

Pr
(
A(k)(t) ≥ A(k)(s) + TL

k (s, uk) + SL
k+1(uk, t+ d)

)

=
∑

0≤s≤t

∑

s≤uk≤t+d

Pr

(

A(k)(t) ≥
m(k−1)

s∑

i=1

lk−1,iXk,i +

157

7. Scaling Element for Variable Length Packet Transmissions

Nuk∑

i=m
(k−1)
s

lk−1,iXk,i + SL
k+1(uk, t+ d)

)

=
∑

0≤s≤t

∑

s≤uk≤t+d

Pr

(

A(k)(t) ≥
Nuk∑

i=1

lk−1,iXk,i + SL
k+1(uk, t+ d)

)

=
∑

0≤s≤t

∑

s≤uk≤t+d

Pr
(

A(k)(t) ≥
(
A(k−1)(s) +

TL
k−1 ⊗ SL

k (s, uk)
)Xk + SL

k+1(uk, t+ d)
)

=
∑

0≤s≤t

∑

s≤uk≤t+d

Pr
(

A(k)(t) ≥ inf
s≤u1≤···≤uk

Uk(s, uk) + SL
k+1(uk, t+ d)

)

≤
∑

0≤s≤t

∑

s≤u1≤···≤uk≤t+d

Pr
(
A(k)(t) ≥ Uk(s, uk) + SL

k+1(uk, t+ d)
)
.

In the third line we expanded the convolution and used Boole’s inequality. In
the fourth line we used Eq. (7.4), (7.5), and (7.10). In the sixth line we used
Eq. (7.10) again. Next we used the inductive hypothesis for (S2) and Boole’s
inequality in the last two lines, which completes the induction for (S1).

To prove (S2) for k + 1 we have

(

A(k)(s) + TL
k ⊗ SL

k+1(s, uk+1)
)Xk+1

=

(

A(k)(s) + inf
s≤uk≤uk+1

{
TL
k (s, uk) + SL

k+1(uk, uk+1)
}
)Xk+1

= inf
s≤uk≤uk+1

(

A(k)(s) + TL
k (s, uk) + SL

k+1(uk, uk+1)
)Xk+1

= inf
s≤uk≤uk+1

(m(k−1)
s∑

i=1

lk−1,iXk,i +

Nuk∑

i=m
(k−1)
s

lk−1,iXk,i + SL
k+1(uk, uk+1)

)Xk+1

= inf
s≤uk≤uk+1





Nuk∑

i=1

lk−1,iXk,i + SL
k+1(uk, uk+1)





Xk+1

= inf
s≤uk≤uk+1

((

A(k−1)(s) + TL
k−1 ⊗ SL

k (s, uk)
)Xk

+ SL
k+1(uk, uk+1)

)Xk+1

= inf
s≤uk≤uk+1

(

inf
s≤u1≤···≤uk

Uk(s, uk) + SL
k+1(uk, uk+1)

)Xk+1

158

7.2. Delay Bounds of a Network with Flow Demultiplexing

= inf
s≤u1≤···≤uk+1

Uk+1(s, uk+1) .

In the sixth line we used Eq. (7.10). In the seventh line we used the induction
hypothesis. In the last line we used the definition of Uk.

Next, we use the statement (S1) to compute the end-to-end delay bound
on Wn(t) for k = n. We have

Pr(Wn(t) > d)

≤
∑

0≤s≤t

∑

s≤u1≤···≤un−1≤t+d

Pr

(

A(n−1)(t) >

(

· · ·

(
(A(s) + SL

1 (s, u1))
X1 + SL

2 (u1, u2)
)X2

+ · · ·

+SL
n−1(un−2, un−1)

)Xn−1

+ SL
n (un−1, t+ d)

)

≤
∑

0≤s≤t

∑

s≤u1≤···≤un−1≤t+d

Pr

((

· · ·
(
(A(t− s)−

SL
1 (s, u1))

X1 − SL
2 (u1, u2)

)X2 − · · · −

SL
n−1(un−2, un−1)

)Xn−1

> SL
n (un−1, t+ d)

)

≤
∑

0≤s≤t

∑

s≤u1≤···≤un−1≤t+d

e−θnS
L
n (un−1,t+d) ·

E

[

e
θn

(

···
(
(A(t−s)−SL

1 (s,u1))
X1−SL

2 (u1,u2)
)
X2

−···−SL
n−1(un−2,un−1)

)
Xn−1
]

≤
∑

0≤s≤t

∑

s≤u1≤···≤un−1≤t+d

e−θnS
L
n (un−1,t+d)

e−θn−1S
L
n−1(un−2,un−1) · · · e−θ1S

L
1 (s,u1)eθ1rA(θ1)(s,t) .

In the second line we expanded the recursion in the statement (S1). In the
third line we repeatedly applied the stationarity bound from Lemma 9. In the
fourth line we used Chernoff’s bound for some θn > 0. In the fifth line we
recursively applied Lemma 10. To do so, we let θiRi−1(θi) = logMl(θi−1),
which is already stated in Lemma 10,Ri−1(θi) =

1
θi
logMXi−1(logMl(θi)).

Here, all SL
i ’s are packetized dynamic servers in the form of Eq. (7.2). Note

159

7. Scaling Element for Variable Length Packet Transmissions

that, if we let

b = sup
{
e−θnCn , e−θn−1Cn−1 , . . . , e−θ1C1

}
, (7.11)

we have

Pr(Wn(t) > d)

≤
∑

0≤s≤t

ed·log be
∑n

i=1 θilmaxe(log b+θ1rA(θ1))(t−s) ·
∑

s≤u1≤···≤un−1≤t+d

1

≤ bde
∑n

i=1 θilmaxKn .

Here we let K =
(1+ d

n)
1+ d

n

(d
n)

d
n

and used log b + θ1rA(θ1) < 0 as the stability

condition. Taking t → ∞ proves the result. We used the same argument as
in Section 4.3.1 for the last step of computation. Finally, the order of growth
of the ε-quantiles for 0 < ε < 1 follows directly as O(n).

7.3 Numerical Evaluation

To evaluate the analytical results, we use the following numerical exam-
ple settings. First, we let the packet sizes be discrete uniformly distributed

i.i.d. r.v.’s, l ∼ U [a, b]. Thus, we know Ml(θ) = eaθ−e(b+1)θ

(b−a+1)(1−eθ)
. Let

a = 1, b = 16 for illustration. Clearly, lmax = 16. Next, we use the
Bernoulli process as the scaling process - X ∼ B(p), where p represents
the data through probability, so that we knowR(θ) = 1

θ log(1−p+pMl(θ)).
Further we assume that all servers are work-conserving with constant bit rate
Ci. Next, we first compare the delay bounds from Section 7.2.1 with those
from Section 7.2.2 (→ Theorem 12) and also validate them against simula-
tion results. Then we evaluate our main result from Theorem 12 changing the
scaling parameters.

For the first comparison we assume that the arrivals are a compound pro-
cess instead of being packetized by a packetizer before being served. Note,
our results in Theorem 12 also imply this case, since the MGF bound of
the arrival process that the theorem requires can be given directly. Without
loss of applicability in real-world, we assume A(t) is a compound Poisson
process, so that rA(θ) = 1

θλ(Ml(θ) − 1). The average rate of the Pois-
son process N(t) is normalized to one data unit (bit) per one time unit, i.e.,
λ = 1. The number of the scaling elements varies from 1 to 9, which means
maximal 10 servers. We assume the utilization of the first server is 0.8, so

160

7.3. Numerical Evaluation

1 3 5 7 9
0

20

40

60

80

Number of Scaling Elements

D
e
la

y

Pkt Scaling
Normalization
Simulation

Figure 7.5: Delay bounds with Theorem 12 (concretely consider packet scal-
ing), “normalized” flow, and simulations.

C1 = 1.25. To choose C2, . . . , C10, we refer to Eq. (7.11). Avoiding that
some server becomes the bottleneck, we can let all the terms in Eq. (7.11)
be equal, i.e., θiCi = θi−1Ci−1, 2 ≤ i ≤ n, where θi’s are implied in
Lemma 10. This is actually a criterion to assign the service capacities along
the path a flow traverses. It must not be so strict, or in other words, the
service capacities in practice may already be set before we know the other
network settings. So here, for simplicity, we just statically set the capaci-
ties as C2 . . . C10 = [1.15, 1.05, 0.95, 0.85, 0.80, 0.75, 0.70, 0.65, 0.60]. The
quantile ε is set to 10−3. We use Omnet++ to do the simulations. We measure
106 packet delays at the destination node and use the empirical quantile from
these for the simulation results. This will increase the result accuracy so that
we ignore the confidence intervals.

Figure 7.5 shows the bounds on the 10−3-quantiles of the delay. The plot
shows the O(n) order of growth. We observe that the results from Theo-
rem 12 are much closer to the simulation results than the results from ana-
lyzing the normalized flow. The mathematical reason is that, although with
both methods we used the maximum packet size lmax, in Theorem 12 we
used the form of [Ci · t − lmax]+, while for the normalization we used the
form of Ci/lmax · t. Obviously, the loss in precision caused by the division is
higher than for subtraction. The gap to the simulation results implies that the
tightness still can be improved. Yet, as this is the first attempt to model the
variable length packet flow transformation, we focused on the expression of
such a network scenario and provided the first insights calculate delay bounds
in this setting. The key to improve on the tightness will be to make smarter

161

7. Scaling Element for Variable Length Packet Transmissions

1 3 5 7 9
0

100

200

300

400

500

Number of Scaling Elements

D
e
la

y

Pkt Scaling (p=0.3)
Simulation (p=0.3)

Pkt Scaling (p=0.75)
Simulation (p=0.75)

Figure 7.6: Delay bounds considering packet scaling and with simulations.

usage of the packet length distribution, than just resorting to lmax. On the
other hand, as we can also see in [95, 36], it can circumvent several techni-
cal difficulties, otherwise we would have to consider the inherent correlations
among arrivals, services and packet scaling elements, which is, however, as
we discussed in previous sections or in [100, 80], very difficult even in the
single node case without flow transformations. Furthermore, the usage of
Boole’s inequality could be improved by the construction of a martingale as
in [118]. Yet, again this is, so far only possible for the single node case. So,
we leave this for future work.

For the second comparison we slightly change the arrival description. Fre-
quently we only know the statistical properties of the bit flow and that the bits
are packetized. The result from Theorem 12 can also deal with this. So we
use a bit flow followed by a packetizer as the arrival for the server. Assume
that the original arrival flow of bits is a Poisson process Poi(λ). Then we

know rA(θ)(s, t) ≤ λ(eθ−1)
θ (t− s) + lmax. The other numerical settings we

use the same as before.

Figure 7.6 shows the bounds on the 10−3-quantiles of the delay under
varying scaling parameters. We can see that Theorem 12 increases with the
through probability p. That means if more of the flow is kept during the
transformation, the higher the burstiness at the next server node will become.
Interestingly, the gap between those curves from the theorem is larger than
that of the simulation results. The reason is that we use lmax/C as the extra
latency for each packet after being served by the packetized server, while ac-
tually most packets have a much smaller latency increase. This treatment en-

162

7.3. Numerical Evaluation

larges the sensitivity of the results, because the more the flow passes through,
the more tightness we lose.

In this chapter, we extended network calculus to model networks with
variable length packet flow transformations. The main contribution is the
definition of a scaling element that works on the packet level (rather than
the bit level). This facilitates a commutation of the service element with
the scaling element on the packet level, and thus preserves the convolution-
form expression of this kind of networks. Based on this we derived the end-
to-end delay bounds. We also discussed another method, which is a direct
extension of a previous model by normalizing the bit flow and the bit-wise
service with the packet sizes, as if the flow was treated as a flow with identical
data units and the service rate was in packets/s. We evaluated both methods
and validated them against simulations. We found that the method based on
the new packet scaling element is much closer to the simulation results than
the other one. However, we also point out that improving the tightness is still
a challenge for future work. We hope to achieve this by finding a more precise
expression for the dynamic server of the packetized service.

163

Chapter 8

Conclusions and Future

Work

8.1 Conclusions

In this thesis, we have developed the stochastic network calculus for model-
ing and analyzing the networks with flow transformations. The main contri-
bution is that even the flow is transformed, in other words, the assumption
that the system is lossless for defining the virtual delay does not hold any-
more, we can still preserve the fundamental result of the network calculus -
convolution-form expression of the network and provide competitive end-to-
end performance bounds.

We first theoretically introduced two versatile stochastic data scaling el-
ements: one is to presumably know less information on the data scaling
behavior and thus capture the statistical properties with the stochastic scal-
ing curves, the other is to assume knowing more about the scaling behavior
and capture the statistical properties through its MGF bound. The stochastic
models facilitate an agile and meticulous analysis for the networks with flow
transformation in general, and particularly for the most important dynamic
demultiplexing case. Through using the equivalent systems or commuting
the servers and scalers, we can express the network service in (min,+)
convolution-form. As a consequence, the fundamental scaling properties of
the end-to-end delay analysis are retained. We can see that, these models lay
the theoretical foundation for a rich set of new applications of network calcu-
lus, e.g., lossy networks, dynamic routing, load balancing, transcoding, SDN,

165

8. Conclusions and Future Work

and so on.
We further stated a deconstruction viewpoint of the scaling behavior by

using the demultiplexing example. Under the assumption that the scheduling
is FIFO, the demultiplexing is actually multiplexing and the service one sub-
flow receives is the leftover service. Through this deconstruction, we on one
hand explained many aspects whereby the two scaling models showed ambi-
guity (the meaning of moving scalers or the commutation with servers) and
advanced the performance analysis; on the other hand, potentially widened
the scope of applying the stochastic scaling elements to the situations where
the flows are simply divided or aggregated without any systematic reasons
such as dynamic routing, coding, or certain control requirement.

Furthermore, we exhibited the modeling power of the stochastic scal-
ing element by applying it to describe and analyze the unreliable links with
retransmission-based loss recovery scheme. We provided a two-phase deriva-
tion of the stochastic performance bounds, i.e., firstly observe the sample-
path, then consider the violation probability. The most difficult challenge lies
in the recursive feedback loops, where the lost data can be lost again. We
solve this fixed-point problem under practically applicable assumptions.

As another application, or, an extension, we studied the stochastic scaling
element in different granularities. Since in more and more network analysis
scenarios we concern cross-layer problems or face a diverse network circum-
stances, the scaling elements in the data and time granularities can be defined
quite differently according to their flow specifications. To that end, we pro-
vided the stochastic scaling element definitions for the identical and variable
length data units, and used them to model the packets demultiplexing, then
derived the end-to-end delay bounds for the whole data units. We also pro-
vided the scaling element defined for a discrete time slot, which is however
easy to define but rather hard to calculate.

In order to validate all these theoretical and analytical results we provided
many helpful numerical examples and interesting discuss.

8.2 Future Work

Recently, there is a growing interest of analyzing the performance of a system
across layers, in hybrid or self-defined circumstances. Many operations on
the data flow within such heterogeneous networked systems may lead to the
flow transformations and thus can be modeled and analyzed with the results
that we contributed in this dissertation. Although we established a modeling
framework for this challenging problem, several tasks in the list of the future

166

8.2. Future Work

work are still need to be carefully treated, so that we have more flexibility and
accuracy when applying this modeling framework to more and more sophis-
ticated real-world applications.

The first task is to find a smarter way to model the scaling on the data
arrived at each discrete time slot. The difficulty lies in that the arrivals and
departures are different time sequences for the same amount of data. As the
scaling is now time-sensitive, the sub-sequence in the departed flow which
are scaled can not be easily identified in the arrivals, thus it is hard to do
the commutation or use the deconstruction viewpoint introduced in this the-
sis to enable further performance derivation. In Chapter 4 we provided a
transform between the scalings in time and space domains. However, the
statistical properties of the space domain scaling can not be directly carried
over from the time domain scaling; moreover, the arrivals are dependent of
the time domain scaling, because the timing really connects the scaling and
the instantaneous arrivals. If we desire a “clean” modeling and analysis, we
need to find another way to identify the transformed part of the flow on the
arrival side and describe the service it requires subject to the better stochastic
performance bounds.

Another future work is to keep the convolution-form expression when
modeling the networks with flow transformations under the other scheduling
schemes besides FIFO. The difficulty is similar as the previous one. The
identification of the transformed flow of interest is a rather hard problem.

The stochastic scaling element can model the in-network processing. But
the modeling capacity still needs to be strengthened. At least considering
different topologies is necessary. We can model the feed-forward, or even
feedback loop for the flow of interest, whereas only a more systematic treat-
ment of the whole network and a more elaborate analysis can indeed meet the
real-world requirement. Several basic however very important and challeng-
ing problems should be solved, for example, the multiplexing of the scaling
process and loosening the assumptions on the system and traffic characteriza-
tions.

167

Index

Arrival curve
deterministic, 15
stochastic, 26

Arrival process, 13
doubly-indexed, 13
instantaneous, 13

Backlog, 13
Busy period, 19

Convolution-form
stochastic, 39

Convolution-form Network
deterministic, 21

Data scaling element, 43
deconstruction, 113
function, 43
inverse function, 44
packet scaling, 147
process ensembling sample paths,

52
process with arrivals, 78
scaled arrival curve, 46
stochastic scaled arrival curve, 56

Delay, 13
packet delay, 147

Demultiplexing
Demultiplexer, 63
demultiplexing, 110
load balancing, 64
packet-level demultiplexing, 146

Dynamic server, 33
under FIFO scheduling, 41

Effective bandwidth, 30
Effective envelope, 30
Equivalent systems

commutation, 93
deterministic, 45
FIFO leftover server, 111
stochastic, 53

Flow, 12
transformation, 43
of bit, 147
of variable length packets, 146

Inequalities
Boole, 27
Chernoff, 30
Doob’s maximal, 133
Hölder, 32

Link
BSC, 132
lossy, 65
unreliable, 131

N-fold integrable, 27
Network model, 11

feed-forward, 12
tandem, 12

Packetizer, 146

169

INDEX

L-packetized, 146
packetized server, 147
process, 146

Performance bounds
deterministic, 19
stochastic, 35

Retransmission
feedback delay, 131
feedback loop, 131
fixed-point, 135

Scaling curve
deterministic min and max, 44
inverse, 45
stochastic min and max, 52
super- and sub-additive closure,

44
Scaling process

Bernoulli, 104
MMOO, 104
MMSP, 87
uniform, 68

Scheduling, 23
bivariate BMUX, 41
bivariate FIFO, 41
BMUX, 24
FIFO, 24
SP, 24, 133
work conserving, 17

Service curve
deterministic, 16
leftover, 23
stochastic, 32
strict, 18, 133

Stochastic arrival bound, 26
EBB, 28
envelope, 29
gSBB, 27
MER, 29
MGF, 28

SBB, 27
WBB, 28

Traffics
compound Poisson, 160
exponential, 28
fBm, 29
LRD, 29
MMOO, 104
MMP, 28
Poisson, 38
SRD, 28

170

Bibliography

[1] J. Abate, G. L. Choudhury, and W. Whitt. Waiting-time tail proba-
bilities in queues with long-tail service-time distributions. Queueing

Systems, 16(3-4):311–338, September 1994.

[2] R. Agrawal, R. L. Cruz, C. Okino, and R. Rajan. Performance bounds
for guaranteed and adaptive services. Technical report, IBM Research,
RC 20649, 1996.

[3] R. Agrawal, R. L. Cruz, C. Okino, and R. Rajan. Performance bounds
for flow control protocols. IEEE/ACM Transactions on Networking,
7(3):310–323, June 1999.

[4] I. F. Akyildiz. Exact product form solution for queueing networks with
blocking. IEEE Transactions on Computers, 36(1):122–125, 1987.

[5] H. Al-Zubaidy, J. Liebeherr, and A. Burchard. A (min,x) network cal-
culus for multi-hop fading channels. In Proceedings of IEEE INFO-

COM, pages 1833–1841, April 2013.

[6] S. Ayyorgun and R. L. Cruz. A service-curve model with loss and
a multiplexing problem. In Proceedings of ICDCS, pages 756–765,
2004.

[7] S. Ayyorgun and W. Feng. A probabilistic definition of burstiness char-
acterization. Technical Report LA-UR 03-3668, Los Alamos National
Laboratory, May 2003.

[8] S. Ayyorgun and W.-C. Feng. A systematic approach for providing
end-to-end probabilistic qos guarantees. In Proceedings of the 13th

IEEE International Conference on Computer Communications and

Networks (ICCCN), Chicago, IL, October 2004.

171

BIBLIOGRAPHY

[9] S. Azodolmolky, R. Nejabati, M. Pazouki, P. Wieder, R. Yahyapour,
and D. Simeonidou. An analytical model for software defined net-
working: A network calculus-based approach. In Proceedings of IEEE

GLOBECOM, pages 1397–1402, December 2013.

[10] S. Balsamo and V. De Nitto. A survey of product-form queueing net-
works with blocking and their equivalences. Annals of Operations Re-

search, 48:31–61, 1994.

[11] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios. Open,
closed and mixed networks of queues with different classes of cus-
tomers. Journal of the ACM, 22(2):248–260, April 1975.

[12] M. Beck, S. Henningsen, S. Birnbach, and J. Schmitt. Towards a sta-
tistical network calculus - dealing with uncertainty in arrivals. In Pro-

ceedings of IEEE INFOCOM, pages 2382–2390, April 2014.

[13] M. Beck and J. Schmitt. On the calculation of sample-path backlog
bounds in queueing systems over finite time horizons. In Proceedings

of ICST VALUETOOLS, pages 148–157, October 2012.

[14] M. Beck and J. Schmitt. The DISCO stochastic network calculator
version 1.0: When waiting comes to an end. In Proceedings of ICST

VALUETOOLS, pages 282–285. ICST, 2013.

[15] D. Bertsekas and R. Gallager. Data Networks. PRENTICE HALL,
1992.

[16] P. Billingsley. Probability and Measure (3rd Edition). Wiley, 1995.

[17] S. Bondorf and J. Schmitt. Statistical response time bounds in ran-
domly deployed wireless sensor networks. In Proceedings of IEEE

LCN, pages 340–343, October 2010.

[18] S. Bondorf and J. Schmitt. The DiscoDNC V2: A comprehensive tool
for deterministic network calculus. In Proceedings of ICST VALUE-

TOOLS, pages 44–49. ICST, 2014.

[19] R. Boorstyn, A. Burchard, J. Liebeherr, and C. Oottamakorn. Effective
envelopes: Statistical bounds on multiplexed traffic in packet networks.
In Proceedings of IEEE INFOCOM, March 2000. Also:Statistical
Multiplexing Gain of Link Scheduling Algorithms in QoS Networks
-Short Version, University of Virginia, Department of Computer Sci-
ence, CS-99-23, July 1999.

172

BIBLIOGRAPHY

[20] R. Boorstyn, A. Burchard, J. Liebeherr, and C. Oottamakorn. Statisti-
cal service assurances for traffic scheduling algorithms. IEEE Journal

on Selected Areas in Communications, 18(12):2651–2664, December
2000.

[21] D. D. Botvich and N. G. Duffield. Large deviations, economies of
scale, and the shape of the loss curve in large multiplexers. Queueing

Systems, 20:293–320, 1995.

[22] R. J. Boucherie and N. M. Van Dijk. Product forms for queueing net-
works with state-dependent multiple job transitions. Advances in Ap-

plied Probability, 23(1):152–187, March 1991.

[23] A. Bouillard, N. Farhi, and B. Gaujal. Packetization and packet curves
in network calculus. In Proceedings of ICST VALUETOOLS, pages
136–137, October 2012.

[24] R. Braden, D. Clark, and S. Shenker. Integrated services in the internet
architecture: an overview. RFC 1633, June 1994.

[25] E. Brockmeyer, H.L. Hallstrom, and A. Jensen. The life and works
of A. K. Erlang. Transactions of the Danish Academy of Technical

Sciences, (2), 1948.

[26] A. Burchard, J. Liebeherr, and F. Ciucu. On theta(h log h) scaling of
network delays. In Proc. IEEE INFOCOM, March 2007.

[27] A. Burchard, J. Liebeherr, and F. Ciucu. On Θ(H logH) scaling of
network delays. In Proceedings of IEEE INFOCOM, May 2007.

[28] A. Burchard, J. Liebeherr, and S. D. Patek. A min-plus calculus for
end-to-end statistical service guarantees. IEEE Transactions on Infor-

mation Theory, 52(9):4105–4114, September 2006.

[29] A. Burchard, J. Liebeherr, and S. D. Patek. A min-plus calculus for
end-to-end statistical service guarantees. IEEE Transactions on Infor-

mation Theory, 52(9):4105 – 4114, September 2006.

[30] J. P. Buzen. Computational algorithms for closed queueing networks
with exponential servers. Communications of the ACM, 16(9):527–
531, September 1973.

[31] S. Chakraborty, S. Künzli, L. Thiele, A. Herkersdorf, and P. Sag-
meister. Performance evaluation of network processor architectures:

173

BIBLIOGRAPHY

Combining simulation with analytical estimation. Computer Networks,
42(5):641–665, April 2003.

[32] C.-S. Chang. Stability, queue length and delay, Part II: Stochastic
queueing networks. In Proceedings of the 31st IEEE Conference on

Decision and Control, pages 1005–1010, December 1992.

[33] C.-S. Chang. Stability, queue length and delay of deterministic and sto-
chastic queueing networks. IEEE Transactions on Automatic Control,
39(5):913–931, May 1994.

[34] C.-S. Chang. Stability, queue length, and delay of deterministic and
stochastic queueing networks. IEEE Transactions on Automatic Con-

trol, 39(5):913–931, May 1994.

[35] C.-S. Chang. On deterministic traffic regulation and service guaran-
tees: A systematic approach by filtering. IEEE Transactions on Infor-

mation Theory, 44(3):1097–1110, May 1998.

[36] C.-S. Chang. Performance Guarantees in Communication Networks.
Springer-Verlag, 2000.

[37] C.-S. Chang and R. L. Cruz. A time varying filtering theory for con-
strained traffic regulation and dynamic service guarantees. In Proceed-

ings of IEEE INFOCOM 1999, pages 63–70, New York, 1999.

[38] G. Choudhury, D. Lucantoni, and W. Whitt. Squeezing the most out of
ATM. IEEE Transactions on Communications, 44(2):203–217, Febru-
ary 1996.

[39] F. Ciucu. Network calculus delay bounds in queueing networks
with exact solutions. In Proc. Proceedings International Teletraffic

Congress, 2007.

[40] F. Ciucu. Scaling Properties in the Stochastic Network Calculus. PhD
thesis. University of Virginia, 2007.

[41] F. Ciucu. End-to-end delay analysis for networks with partial assump-
tions of statistical independence. In Proceedings of ICST VALUE-

TOOLS, 2009.

[42] F. Ciucu, A. Burchard, and J. Liebeherr. A network service curve ap-
proach for the stochastic analysis of networks. In ACM SIGMETRICS,
volume 33, pages 279–290, 2005.

174

BIBLIOGRAPHY

[43] F. Ciucu, A. Burchard, and J. Liebeherr. Scaling properties of statisti-
cal end-to-end bounds in the network calculus. IEEE Transactions on

Information Theory, 52(6):2300–2312, June 2006.

[44] F. Ciucu and O. Hohlfeld. Scaling of buffer and capacity requirements
fo voice traffic in packet networks. In Proceedings of the International

Teletraffic Congress (ITC), 2009.

[45] F. Ciucu, O. Hohlfeld, and P. Hui. Non-asymptotic throughput and
delay distributions in multi-hop wireless networks. In The 48th An-

nual Allerton Conference on Communication, Control, and Comput-

ing, 2010.

[46] F. Ciucu and J. Liebeherr. A case for decomposition of FIFO networks.
In Proceedings of IEEE INFOCOM, pages 1071–1079, April 2009.

[47] F. Ciucu, F. Poloczek, and J. Schmitt. Sharp per-flow delay bounds
for bursty arrivals: The case of FIFO, SP, and EDF scheduling. In
Proceedings of IEEE INFOCOM, pages 1896–1904, April 2014.

[48] F. Ciucu and J. Schmitt. Perspectives on network calculus: No free
lunch, but still good value. SIGCOMM Computer Communication Re-

view, 42(4):311–322, August 2012.

[49] F. Ciucu, J. Schmitt, and H. Wang. On expressing networks with flow
transformation in convolution-form. In Proceedings of IEEE INFO-

COM, pages 1979–1987, April 2011.

[50] R. L. Cruz. A calculus for network delay, Part I: Network elements in
isolation. IEEE Transactions on Information Theory, 37(1):114–131,
January 1991.

[51] R. L. Cruz. A calculus for network delay, Part II: Network analy-
sis. IEEE Transactions on Information Theory, 37(1):132–141, Jan-
uary 1991.

[52] R. L. Cruz. Quality of service guarantees in virtual circuit switched
networks. IEEE Journal on Selected Areas in Communications,
13(6):1048–1056, August 1995.

[53] R. L. Cruz. Quality of service management in integrated services net-
works. In Proceedings of the 1st Semi-Annual Research Review, Center

for Wireless Communications, 1996.

175

BIBLIOGRAPHY

[54] R. L. Cruz. SCED+: Efficient management of quality of service guar-
antees. In Proc. IEEE INFOCOM, volume 2, pages 625–634, March
1998.

[55] R. L. Cruz and M. Taneja. An analysis of traffic clipping. In Confer-

ence of Information Sciences and Systems, March 1998.

[56] J. N. Daigle and J. D. Langford. Models for analysis of packet voice
communications systems. IEEE Journal on Selected Areas in Commu-

nications, 4(6):847–855, September 1986.

[57] N. G. Duffield and N. O’Connell. Large deviations and overflow
probabilities for the general single-server queue, with applications.
Mathematical Proceedings of the Cambridge Philosophical Society,
118(2):363–374, September 1995.

[58] E. O. Elliott. Estimates of error rates for codes on bursty-noise chan-
nels. Bell System Technical Journal, 42(9):1977–1997, September
1963.

[59] A. K. Erlang. The theory of probabilities and telephone conversations.
Nyt Tidsskrift for Matematik B, 20:33–39, 1909 (in Danish).

[60] A. K. Erlang. Solution of some problems in the theory of probabilities
of significance in automatic telephone exchanges. Elektrotkeknikeren,
13, 1917 (in Danish).

[61] M. Fidler. An end-to-end probabilistic network calculus with moment
generating functions. In Proceedings of IEEE IWQoS, pages 261–270,
June 2006.

[62] M. Fidler. A network calculus approach to probabilistic quality of
service analysis of fading channels. In Proceedings of IEEE Globecom,
Nov 2006.

[63] M. Fidler. A survey of deterministic and stochastic service curve mod-
els in the network calculus. IEEE Communications Surveys and Tuto-

rials, 12(1), 2010.

[64] M. Fidler and J. Schmitt. On the way to a distributed systems calculus:
An end-to-end network calculus with data scaling. In Proceedings of

ACM SIGMETRICS/Performance, pages 287–298, 2006.

[65] E. Gelenbe. Product form networks with negative and positive cus-
tomers. Journal of Applied Probability, 28(3):656–663, 1991.

176

BIBLIOGRAPHY

[66] R. J. Gibbens and P. J. Hunt. Effective bandwidths for the multi-type
UAS channel. Queueing Systems, 9(1-2):17–28, September 1991.

[67] E. N. Gilbert. Capacity of a bursty-noise channel. Bell System Techni-

cal Journal, 39(5):1253–1265, September 1960.

[68] N. Gollan and J. Schmitt. Energy-efficent tdma design under real-time
constraints in wireless sensor networks. In Proceedings of MASCOTS,
pages 80–87. Springer, LNCS 3560, October 2007.

[69] N. Gollan, F. Zdarsky, I. Martinovic, and J. Schmitt. The disco network
calculator. In Proceedings of GI/ITG MMB, pages 1–3, March 2008.

[70] W. J. Gordon and G. F. Newell. Closed queueing systems with expo-
nential servers. Operations Research, 15(2):254–265, August 1967.

[71] R. Guérin, H. Ahmadi, and M. Naghshineh. Equivalent capacity and
its application to bandwidth allocation in high-speed networks. IEEE

Journal on Selected Areas in Communications, 9(7):968–981, Septem-
ber 1991.

[72] H. Heffes and D. M. Lucantoni. A Markov modulated characterization
of packetized voice and data traffic and related statistical multiplexer
performance. IEEE Journal on Selected Areas in Communications,
4(6):856–867, September 1986.

[73] W. Henderson and P. G. Taylor. Product form in networks of queues
with batch arrivals and batch services. Queueing Syst. Theory Appl.,
6(1):71–87, 1990.

[74] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst.
System level performance analysis - the SymTA/S approach. In Pro-

ceedings of Computers and Digital Techniques, pages 148–168, March
2005.

[75] R. Horn and C. R. Johnson. Matrix Analysis. Cambridge University
Press, 1985.

[76] J. Y. Hui. Resource allocation for broadband networks. IEEE Jour-

nal of Selected Areas in Communications, 6(9):1598–1608, December
1988.

[77] J. R. Jackson. Networks of waiting lines. Operations Research,
(5):518–521, August 1957.

177

BIBLIOGRAPHY

[78] R. Jain and I. Chlamtac. The P-Square algorithm for dynamic cal-
culation of percentiles and histograms without storing observations.
Communications of the ACM, pages 1076–1085, October 1985.

[79] Y. Jiang. A basic stochastic network calculus. ACM Computer Com-

munication Review, 36(4):123–134, October 2006.

[80] Y. Jiang. Stochastic service curve and delay bound analysis: A sin-
gle node case. In Proceedings of the 25th International Teletraffic

Congress (ITC 25), September 2013.

[81] Y. Jiang and P. J. Emstad. Analysis of stochastic service guarantees
in communication networks: A server model. In Proc. IFIP IWQoS,
pages 233–245, June 2005.

[82] Y. Jiang and Y. Liu. Stochastic Network Calculus. Springer-Verlag,
2008.

[83] U. Herzog K. M. Chandy and L. Woo. Parametric analysis of queuing
networks. IBM Journal of Research and Development, 19(1):36–42,
January 1979.

[84] F. P. Kelly. Reversibility and stochastic networks. John Wiley & Sons
Ltd., 1979.

[85] F. P. Kelly. Loss networks. The Annals of Applied Probability,
1(3):319–378, August 1991.

[86] F. P. Kelly. Notes on effective bandwidths. In F. P. Kelly, S. Zachary,
and I. Ziedins, editors, Stochastic Networks: Theory and Applications,
number 4 in Royal Statistical Society Lecture Notes, pages 141–168.
Oxford University Press, 1996.

[87] I. Keslassy, C.-S. Chang, N. McKeown, and D.-S. Lee. Optimal load-
balancing. In Proc. IEEE INFOCOM, March 2005.

[88] H. Kim and J. C. Hou. Network calculus based simulation: theorems,
implementation, and evaluation. In Proceedings of IEEE INFOCOM,
March 2004.

[89] L. Kleinrock. Communication Nets : Stochastic Message Flow and

Delay. McGraw-Hill, Inc., 1964.

178

BIBLIOGRAPHY

[90] E. W. Knightly and H. Zhang. D-BIND: an accurate traffic model for
providing QoS guarantees to VBR traffic. IEEE/ACM Transactions on

Networking, 5(2):219–231, April 1997.

[91] A. Koubaa, M. Alves, and E. Tovar. Modeling and worst-case dimen-
sioning of cluster-tree wireless sensor networks. In Proceedings of the

27th IEEE International Real-Time Systems Symposium, pages 412–
421, December 2006.

[92] J. Kurose. On computing per-session performance bounds in high-
speed multi-hop computer networks. In Proceedings of ACM Sigmet-

rics, pages 128–139, June 1992.

[93] S. S. Lavenberg and M. Reiser. Stationary state probabilities at ar-
rival instants for closed queueing networks with multiple types of cus-
tomers. Journal of Applied Probability, 17(4):1048–1061, December
1980.

[94] J.-Y. Le Boudec. Application of network calculus to guaranteed service
networks. IEEE Transactions on Information Theory, 44(3):1087–
1096, May 1998.

[95] J.-Y. Le Boudec and P. Thiran. Network Calculus A Theory of Deter-

ministic Queuing Systems for the Internet. Number 2050 in Lecture
Notes in Computer Science. Springer-Verlag, 2001.

[96] J.-Y. Le Boudec and M. Vojnović. Elements of probabilistic network
calculus for packet scale rate guarantee nodes. In Proc. of 15th Int‘l

Symp. of Mathematical Theory of Networks and Systems.

[97] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On the
self-similar nature of Ethernet traffic. IEEE/ACM Transactions on Net-

working, 2(1):1–15, February 1994.

[98] C. Li, A. Burchard, and J. Liebeherr. A network calculus with effec-
tive bandwidth. IEEE/ACM Transactions on Networking, 15(6):1063–
6692, December 2007.

[99] J. Liebeherr, A. Burchard, and F. Ciucu. Non-asymptotic delay bounds
for networks with heavy-tailed traffic. In Proceedings of IEEE INFO-

COM, pages 1–9, March 2010.

[100] J. Liebeherr, A. Burchard, and F. Ciucu. Delay bounds in communica-
tion networks with heavy-tailed and self-similar traffic. IEEE Trans-

actions on Information Theory, 58(2):1010–1024, February 2012.

179

BIBLIOGRAPHY

[101] J. Liebeherr, Y. Ghiassi-Farrokhfal, and A. Burchard. Does link
scheduling matter on long paths? In Proceedings of IEEE INFOCOM,
pages 199–208, Genova, June 2010.

[102] J. Liebeherr, Y. Ghiassi-Farrokhfal, and A. Burchard. On the impact of
link scheduling on end-to-end delays in large networks. IEEE Journal

on Selected Areas in Communications, 29(5):1009–1020, May 2011.

[103] D. V. Lindley. The theory of queues with a single server. volume 48,
pages 277–289, April 1952.

[104] J. D. C. Little. A Proof for the Queuing Formula: L = λW . Operations

Research, 9(3):383–387, June 1961.

[105] R. Lübben, M. Fidler, and J. Liebeherr. Stochastic bandwidth esti-
mation in networks with random service. IEEE/ACM Transactions on

Networking, 22(2):484–497, April 2014.

[106] B. Maglaris, D. Anastassiou, P. Sen, G. Karlsson, and J. D. Robbins.
Performance models of statistical multiplexing in packet video com-
munications. IEEE Transactions on Communications, 36(7):834 – 844,
July 1988.

[107] S. Mao and S. S. Panwar. A survey of envelope processes and their
applications in quality of service provisioning. IEEE Communications

Surveys & Tutorials, 8(3):2–20, 3rd Quarter 2006.

[108] L. Massoulié and A. Simonian. Large buffer asymptotics for the queue
with fractional Brownian input. Journal of Applied Probabability,
36(3):894–906, September 1999.

[109] A. Maxiaguine, S. Künzli, and L. Thiele. Workload characterization
model for tasks with variable execution demand. In Proceedings of

Design, Automation and Test in Europe Conference and Exhibition,
volume 2, pages 1040–1045, February 2004.

[110] A. Maxiaguine, S. Künzli, and L. Thiele. Workload characterization
model for tasks with variable execution demand. In Design Automation

and Test in Europe (DATE), pages 1040–1045, Paris, France, Feb 2004.
IEEE Computer Society.

[111] R. R. Mazumdar. Performance Modeling, Loss Networks, and Statis-

tical Multiplexing. Synthesis Lectures on Communication Networks.
Morgan & Claypool Publishers, 2009.

180

BIBLIOGRAPHY

[112] T. Mikosch, S. Resnick, H. Rootzén, and A. Stegeman. Is network
traffic approximated by stable Lévy motion or fractional Brownian mo-
tion? Annals of Applied Probability, 12(1):23–68, February 2002.

[113] I. Norros. On the use of fractional Brownian motion in the theory of
connectionless networks. IEEE Journal on Selected Areas in Commu-

nications, 13(6):953–962, August 1995.

[114] K. A. Nuaimi, N. Mohamed, and J. Al-Jaroodi. A survey of load bal-
ancing in cloud computing: Challenges and algorithms. In Proceed-

ings of Network Cloud Computing and Applications (NCCA), pages
137–142. IEEE, dec 2012.

[115] A. Parekh and R. Gallager. A generalized processor sharing approach
to flow control - the single node case. IEEE/ACM Transactions on

Networking, 1(3):344–357, June 1993.

[116] A. K. Parekh and R. G. Gallager. A generalized processor sharing
approach to flow control in integrated services networks: The multiple
node case. IEEE/ACM Transactions on Networking, 2(2):137–150,
April 1994.

[117] V. Paxson and S. Floyd. Wide area traffic: The failure of poisson mod-
eling. IEEE/ACM Transactions on Networking, 3(5):226–244, June
1995.

[118] F. Poloczek and F. Ciucu. Scheduling analysis with martingales. Per-

formance Evaluation, 79:56–72, September 2014.

[119] Martin Reiser and Stephen S. Lavenberg. Mean-value analysis of
closed multichain queuing networks. Journal of the ACM, 27(2):313–
322, April 1980.

[120] A. Rizk and M. Fidler. Sample path bounds for long memory FBM
traffic. In Proceedings of IEEE INFOCOM, pages 1–5, March 2010.

[121] A. Rizk and M. Fidler. Statistical end-to-end performance bounds for
networks under long memory FBM cross traffic. In Proceedings of

IEEE IWQoS, pages 1–9, June 2010.

[122] H. Sariowan, R. L. Cruz, and G. C. Polyzos. Scheduling for quality of
service guarantees via service curves. In Proceedings of IEEE ICCCN,
pages 512–520, September 1995.

181

BIBLIOGRAPHY

[123] H. Schioler, J. Jessen, J. D. Nielsen, and K. G. Larsen. Network calcu-
lus for real time analysis of embedded systems with cyclic task depen-
dencies. In Proceedings of CATA, pages 326–332, March 2005.

[124] H. Schioler, H. P. Schwefel, and M. B. Hansen. CyNC: A MAT-
LAB/SimuLink toolbox for network calculus. In Proceedings of ICST

VALUETOOLS, pages 60:1–60:10. ICST, 2007.

[125] J. Schmitt. On average and worst case behaviour in non-preemptive
priority queueing. In Proceedings of SPECTS, 2003.

[126] J. Schmitt, N. Gollan, S. Bondorf, and I. Martinovic. Pay bursts only
once holds for (some) non-FIFO systems. In Proceedings of IEEE

INFOCOM, April 2011.

[127] J. Schmitt and U. Roedig. Sensor Network Calculus - A Framework
for Worst Case Analysis. In Proceedings of IEEE/ACM International

Conference on Distributed Computing in Sensor Systems (DCOSS’05),

Marina del Rey, USA, pages 141–154. Springer, LNCS 3560, June
2005. ISBN 3-540-26422-1.

[128] J. Schmitt, H. Wang, and I. Martinovic. A self-adversarial approach
to delay analysis under arbitrary scheduling. In Proceedings of the

4th International Symposium On Leveraging Applications of Formal

Methods, Verification and Validation (ISoLA 2010). Springer Verlag,
October 2010.

[129] J. Schmitt and F. Zdarsky. The DISCO Network Calculator - a tool-
box for worst case analysis. In Proceedings of ICST VALUETOOLS,
November 2006.

[130] J. Schmitt, F. Zdarsky, and M. Fidler. Delay bounds under arbitrary ag-
gregate multiplexing: When network calculus leaves you in the lurch...
In Proceedings of IEEE INFOCOM, April 2008.

[131] J. Schmitt, F. Zdarsky, and I. Martinovic. Improving performance
bounds in feed-forward networks by paying multiplexing only once.
In Proceedings of GI/ITG MMB, March 2008.

[132] J. Schmitt, F. Zdarsky, and U. Roedig. Sensor Network Calculus with
Multiple Sinks. In Proceedings of IFIP Networking 2006, Workshop on

Performance Control in Wireless Sensor Networks, Coimbra, Portugal,
pages 6–13. Springer LNCS, May 2006. ISBN 972-95988-5-1.

182

BIBLIOGRAPHY

[133] J. Schmitt, F. Zdarsky, and L. Thiele. A Comprehensive Worst-Case
Calculus for Wireless Sensor Networks with In-Network Processing.
In IEEE Real-Time Systems Symposium (RTSS’07), 2007.

[134] K. C. Sevcik and I. Mitrani. The distribution of queuing network states
at input and output instants. Journal of the ACM, 28(2):358–371, April
1981.

[135] F. B. Shepherd and P. J. Winzer. Selective randomized load balancing
and mesh networks with changing demands. J. Opt. Netw., 5:320–339,
2006.

[136] N. B. Shroff and M. Schwartz. Improved loss calculations at an ATM
multiplexer. IEEE/ACM Transactions on Networking, 6(4):411–421,
August 1998.

[137] T. Skeie, S. Johannessen, and O. Holmeide. Timeliness of real-time IP
communication in switched industrial ethernet networks. IEEE Trans-

actions on Industrial Informatics, 2(1):25–39, February 2006.

[138] D. Starobinski and M. Sidi. Stochastically bounded burstiness for
communication networks. IEEE Transactions on Information Theory,
46(1):206–212, January 2000.

[139] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for
scheduling hard real-time systems. In IEEE International Symposium

on Circuits and Systems, volume 4, pages 101–104, 2000.

[140] D. Towsley. Queuing network models with state-dependent routing.
Journal of the ACM, 27(2):323–337, April 1980.

[141] L. G. Valiant. A scheme for fast parallel communication. SIAM Journal

on Computing, 11(2):350–361, 1982.

[142] András Varga. OMNeT++. http://www.omnetpp.org/.

[143] E. Wandeler, A. Maxiaguine, and L. Thiele. Quantitative Characteri-
zation of Event Streams in Analysis of Hard Real-Time Applications.
Real-Time Systems, 29(2):205–225, March 2005.

[144] E. Wandeler and L. Thiele. Real-Time Calculus (RTC) toolbox. 2006.

[145] H. Wang, F. Ciucu, and J. Schmitt. A leftover service curve approach
to analyze demultiplexing in queueing networks. In Proceedings of

ICST VALUETOOLS, pages 168–177, October 2012.

183

BIBLIOGRAPHY

[146] H. Wang and J. Schmitt. On the way to a wireless network calculus
- the single node case with retransmissions. Technical Report 375/10,
University of Kaiserslautern, Germany, January 2010.

[147] H. Wang and J. Schmitt. Delay bounds calculus for variable length
packet transmissions under flow transformations. Technical Report
390/14, University of Kaiserslautern, Germany, November 2014.

[148] H. Wang and J. Schmitt. A delay calculus for streaming media subject
to video transcoding. IEEE COMSOC MMTC E-Letter, 9(2), March
2014.

[149] H. Wang and J. Schmitt. End-to-end delay bounds for variable length
packet transmissions under flow transformations. In Proceedings of

ICST VALUETOOLS, December 2014.

[150] H. Wang, J. Schmitt, and F. Ciucu. Performance modelling and anal-
ysis of unreliable links with retransmissions using network calculus.
In Proceedings of the 25th International Teletraffic Congress (ITC 25),
September 2013.

[151] H. Wang, J. Schmitt, and I. Martinovic. Dynamic demultiplexing in
network calculus – theory and application. Performance Evaluation,

Elsevier, 68(2):201–219, Feb 2011.

[152] H. S. Wang and N. Moayeri. Finite-state Markov channel – a useful
model for radio communication channels. 44(1):163–171, February
1995.

[153] K. Wang, F. Ciucu, C. Lin, and S. H. Low. A stochastic power net-
work calculus for integrating renewable energy sources into the power
grid. IEEE Journal on Selected Areas in Communications, 30(6):1037–
1048, May 2012.

[154] K. Wu, Y. Jiang, and G. Hu. A calculus for information-driven net-
works. In IEEE International Workshop on Quality of Service(IWQoS),
pages 1–9, Jul 2009.

[155] O. Yaron and M. Sidi. Generalized processor sharing networks with
exponentially bounded burstiness arrivals. Journal of High Speed Net-

works, 3.

[156] O. Yaron and M. Sidi. Performance and stability of communication
networks via robust exponential bounds. IEEE/ACM Transactions on

Networking, 1(3):372–385, June 1993.

184

BIBLIOGRAPHY

[157] Q. Yin, Y. Jiang, S. Jiang, and P. Y. Kong. Analysis on generalized
stochastically bounded bursty traffic for communication networks. In
Proceedings of IEEE Local Computer Networks (LCN), pages 141–
149, November 2002.

[158] Y. Yuan, K. Wu, W. Jia, and Y. Jiang. Performance of acyclic stochastic
networks with network coding. IEEE Transactions on Parallel and

Distributed Systems, 22(7):1238–1245, July 2011.

[159] R. Zhang-Shen and N. McKeown. Designing a predictable internet
backbone network. In Proc. HotNets III, November 2004.

[160] K. Zheng, F. Liu, L. Lei, C. Lin, and Y. Jiang. Stochastic performance
analysis of a wireless finite-state markov channel. IEEE/ACM Trans-

actions on Wireless Communications, 12(2):782–793, January 2013.

185

Curriculum Vitae

Personal Information

Name: Hao Wang
Place of Birth: Anshan, Liaoning, China
Nationality: China

Education

08.2009 - 07.2015 Ph.D., Distributed Computer Systems Lab
(DISCO) of the department of computer sci-
ence, TU Kaiserslautern, Germany

10.2005 - 05.2009 M.Sc., computer science, TU Kaiserslautern,
Germany. WS06/07 break for learning German

09.1998 - 07.2002 B.Eng., computer science, Northeasten Uni-
versity, China

Professional Experience

from 08.2009 Scientific staff member, then from 04.2012 res-
earch assistant, at DISCO Lab, TU Kaiserslaut-
ern, Germany

05.2011 - 07.2011 Internship at Telekom Innovation Laboratories
(T-Labs), Berlin

06.2010 - 07.2010 Internship at Telekom Innovation Laboratories
(T-Labs), Berlin

07.2002 - 07.2004 Software engineer, Neusoft Co., Ltd., Shenyang,
China

187

	List of Figures
	List of Tables
	Introduction
	Network Performance Modeling and Analysis
	Related Queueing Theories
	Network Calculus

	Flow Transformations
	Thesis Contribution
	Thesis Organization

	Background on Network Calculus
	Network Model
	Deterministic Network Calculus
	Deterministic Arrival Curve
	Deterministic Service Curve
	Worst-case Analysis

	Stochastic Network Calculus
	Stochastic Bounds of Arrivals
	Stochastic Service Curve and Dynamic Server
	Stochastic Analysis

	Express Flow Transformations in Network Calculus

	Stochastic Data Scaling Element - Bounding Functions
	Stochastic Data Scaling
	End-to-end Performance Bounds
	Modeling Dynamic Demultiplexing
	The Demultiplexer
	Application 1: Load Balancing
	Application 2: Lossy Links

	Application: Delay Bounds under Uncertain Load Balancing
	Scenario and Preliminaries
	Comparison of Alternative Analyses

	Stochastic Data Scaling Element - Process
	Stochastic Data Scaling Element
	Example: Markov-Modulated Scaling Processes

	Commutation
	End-to-End Delay Bounds
	Transformation in Convolution-Form
	Alternative Node-by-Node Analysis

	Numerical Evaluation

	Deconstruction of Stochastic Data Scaling Element
	A Novel Model for Flow Demultiplexing
	Single Node Deconstruction: Main Idea
	Two Nodes Deconstruction and Delay Bounds
	Delay Bounds Comparison
	MGF Bounds of the Arrivals and the Scalings
	Delay Bounds: Numerical Examples

	N Nodes Deconstruction

	Scaling Element for Unreliable Links with Retransmissions
	A Model of an Unreliable Link with Retransmissions
	End-to-End Performance Bounds
	Modeling a Binary Symmetric Channel (BSC)
	Arrival Curves for Retransmission Flows
	Performance Bounds

	Numerical Evaluation

	Scaling Element for Variable Length Packet Transmissions
	Modeling the Demultiplexing of Variable Length Packet Flows
	Delay Bounds of a Network with Flow Demultiplexing
	Observing the Packet Flow
	Observing the Original Bit Flow with Packetizers

	Numerical Evaluation

	Conclusions and Future Work
	Conclusions
	Future Work

	Index
	Bibliography
	Curriculum Vitae

